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Problem 1: Random variables, common distributions and the monopoly price

In this problem, we will revise some basic concepts in probability, and use these to better understand
the monopoly price (alternatively referred to as the optimal posted price or Myerson price). Recall
from class that we want to study a setting where we want to sell a single item to a single buyer.
The buyer has a random reservation value V ≥ 0 for the item, drawn from a distribution with CDF
F (·) (we denote this as V ∼ F ). If we charge a price p, then the buyer gets a utility U = V − p
from buying the item. We assume that the buyer purchases the item if and only if U ≥ 0.

Part (a)

Fix the price of the item to be p, and let X be an indicator random variable for the sale (i.e., X = 1
if the buyer purchases the item, else 0); what is the probability distribution of X? Also, let R(p)
be the revenue we obtain from the sale; what is the expected value and variance of R(p)?

Part (b)

Suppose we have n items and n buyers, and offer the first item to the first buyer at price p, the
second to the second buyer at price 2p, and in general, offer the kth item to the kth buyer at price
k · p. Let Rk be the revenue obtained from the kth item, and R =

∑n
k=1Rk be the net revenue.

Assuming each buyer i has an i.i.d reservation value Vi ∼ F (·); what is E[R] and Var(R)?

Part (c)

Next, assume all buyers have the same reservation value V drawn from a UNIFORM[0, (n + 1)p]
distribution. Now what is the expected value and variance of R?

Part (d)

Returning to the one item/one buyer setting, let R(p) be the revenue we obtain if the posted price
is p. Find the optimal price p∗ = arg maxp≥0R(p), and check if the function R(p) concave, when:

1. V is uniformly distributed in [0,m].
2. V is distributed as EXPONENTIAL(λ).

Part (e)

Let q denote the probability that we make a sale; we define the inverse demand function p(q) to
be the maximum price p at which the sale probability is q 1. For a general (continuous) CDF F (·),
write an expression for the inverse demand function in terms of F and q.

1We should be careful here, as such a p may not exist, for example, if the distribution is discrete; more generally, we
can define p(q) to be the maximum price such that the sale probability is at least q, i.e., p(q) = maxp≥0{(1−F (p)) ≥ q}.
For continuous distributions, however, the above definition is fine.
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Part (f)

Next, note that we can write the revenue as a function of the sale probability q as R(q) = q · p(q).
Write down R(q) for the two distributions in part (d), and show that the function is concave in
both cases.

Part (g)

For a general CDF F , show that

dR(q)/dq = p(q)− 1− F (p)

f(p)

Thus, conclude that the revenue curve R(q) is concave if and only if p− 1−F (p)
f(p) is non-decreasing.

Such a distribution is said to be regular.

Part (h)

For a distribution with CDF F , the hazard-rate ρ(p) is defined as

ρ(p) =
f(p)

1− F (p)

Argue that if a distribution has non-decreasing hazard rate, then its revenue curve R(q) is concave.
Such a distribution is said to be a monotone hazard-rate (or MHR) distribution.

Note: To see why ρ(·) is called the hazard-rate (and also, to remember the definition), consider F
to be the CDF corresponding to the lifetime of a lightbulb before it fuses – then ρ(t)dt is then the
probability it will fuse in time [t, t+ dt] given that it has survived till time t.

Part (i)

(OPTIONAL) Give an example of a regular distribution that is not MHR.

Hint: Do not think of well-known distributions (these are usually MHR). Instead, recall F can be
any non-decreasing bounded continuous function, scaled to lie in [0, 1].
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Problem 2: Linear Programming, duality, and the invisible hand of the market

In this problem, we will revise some basic concepts in linear programming, and show how these can
be used to demonstrate the power of markets in solving resource allocation problems.

The basic problem we want to consider is that of allocating m items (denoted I = {1, 2, . . . ,m})
among n buyers (denoted as B = {1, 2, . . . , n}). One desirable way of doing so is to allocate items
to buyers who ‘value’ them the most. We now show how this notion can be formalized, and how
this optimization can be achieved via simple pricing policies. Throughout this problem, we assume
that each buyer i has value vij ≥ 0 for each item j: let V = {vij} denote the n×m matrix of buyer
values, and assume that all entries of V are distinct. We also assume that each item j has a price
pj , which a buyer must pay to purchase the item. Each item has only one copy, and hence can be
sold to either a single buyer, or not sold at all; each buyer can buy as many items as possible.

Part (a)

First, we consider the case of additive buyers. We assume that a buyer i ∈ B will only buy an item
j ∈ I if its resulting utility vij − pj ≥ 0; moreover, if buyer i purchases a subset of items Ii ⊆ I,
then her net utility is Ui =

∑
j∈Ii(vij − pj)

2 . If no item is allocated to buyer i, then Ii = ∅ and
Ui = 0. We define the utility Us of the seller to be the total amount of money she earns from item
sales, and define the social welfare W = Us +

∑
i∈B Ui to be the sum of everyone’s utilities.

Let xij be an indicator that buyer i purchases item j, i.e., xij = 1 if i purchases j, else it is
0. Given buyer valuations V , prices {pj} and indicators {xij}, write down the expression for the
social welfare. Using this, characterize the allocation of items that maximizes the social welfare.

Part (b)

Now suppose we relax the indicator variables xij to take values in [0, 1] (in other words, we assume
that each item j can be fractionally allocated to a buyer i). Write down a linear program that finds
an allocation to maximize the social welfare. Moreover, characterize all the extreme points of the
above LP.

Part (c)

Your above LP should have m constraints, one for each item; let πm be a dual variable associated
with each of these constraints. Write down the dual linear program. Moreover, suppose {x∗ij}
and {π∗j } are optimal solutions to the primal and dual programs – write down the complementary
slackness conditions.

Part (d)

Given any optimal dual solution π∗, suppose we set the price for each item j as pj = π∗j . Argue
that under these prices, there is an allocation of items to agents that obeys the following: (1) if

2For example, you visit NYC, and buy entry tickets for multiple museums; (assuming you have enough time) you
can now visit them all!
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buyer i is allocated item j, then vij − pj ≥ 0, (2) for any item j not allocated to buyer i, we have
vij − pj ≤ 0, and (3) the social welfare is maximized.

Part (e)

Next, we consider the case of unit-demand buyers. We assume that if buyer i ∈ B purchases a
subset of items Ii ⊆ I, then her net utility is Ui = maxj∈Ii(vij) −

∑
j∈Ii pj , i.e., she pays for all

purchased items, but only gets utility from the highest valued item 3. As before, the seller’s utility
Us is still the total amount of money she earns, and the social welfare is W = Us +

∑
k∈B Ui.

Argue that in any welfare maximizing allocation policy in this setting, each buyer is allocated at
most one item. The resulting optimization problem is known as the maximum-weighted matching
problem (and is a maximization version of the assignment problem that you might have seen in
some previous course).

Part (f)

As in part (b), let xij ∈ [0, 1] be a fractional allocation of item j to buyer i. Write an LP to choose
a fractional allocation in order to maximize welfare.

Note: Recall (or learn...) that the assignment problem LP also has integer corner points – thus,
the above relaxation actually gives a valid allocation.

Part (f)

Write down the dual for the above LP, and also write the complementary slackness conditions.

Part (g)

(OPTIONAL) Suppose you are given an optimal primal solution x∗, and associated dual solution
µ∗. As in part (d), show that there is a way to use these to set item prices pj , under which
there is an allocation xij that satisfies: (1) each buyer is allocated at most one item, and each
item is allocated to at most one buyer, (2) if buyer i is allocated item j, then vij − pj ≥ 0, (3)
for any item j not allocated to buyer i, we have vij−pj ≤ 0, and (4) the social welfare is maximized.

Note: To see why the above result is remarkable, observe that the prices π∗ (which are known as
Walrasian or envy-free prices) magically coordinate the buyers, such that they each individually
pick their favorite item, and by doing so, collectively solve a combinatorial optimization problem!

3You are in NYC again, and buy tickets for multiple broadway shows with identical showtimes (because you were
undecided...); you must pay for each ticket, but can only watch one (and are not allowed to sell the other tickets!).
This problem should convince you that this is a harder setting, and so you should stick to the museums :)
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Problem 3: “You can’t always charge what they want (to pay)”

In this question, we will see how the interaction between buyer behavior and seller constraints can
sometimes lead to non-intuitive pricing policies, wherein you may not want to sell to everyone who
is willing to .

Suppose we own a cabin in the mountains, which we want to rent out on CleanAirBnB. Inter-
ested customers arrive sequentially looking to reserve the cabin; they arrive deterministically every
2 days, and each customer wants to rent it for a period of 3 nights. Formally, consider discrete
time-slots (days) indexed as t = 0, 1, 2, . . .. A single customer arrives at the beginning of every even
slot (i.e., at time-slots 0, 2, 4, . . .), and if a customer rents the cabin starting at time-slot t, then it
becomes free at the beginning of time-slot t+ 3.

Each customer has value v = 5 for staying in the cabin; however, they also have a cost of c = 1
per day they need to wait before getting the cabin. For a customer arriving at time t, let dt denote
the number of time slots after which the cabin becomes available, and suppose she is charged a fee
of pt to reserve the cabin from time-slot t + dt to t + dt + 3: we assume she agrees to reserve the
cabin if and only if her utility ut = v − c · dt − pt = 5− dt − pt ≥ 0, else she goes elsewhere looking
for cabins to rent. Our aim is to design the pricing policy pt so as to maximize our revenue.

Part (a)

First, suppose we do not charge customers for reserving the cabin. Assuming d0 = 0 (i.e., the cabin
starts as empty), plot how the sequence dt changes with t.

Hint: You do not need to plot dt for an infinite number values of t! Observe that whenever dt
becomes equal to some value you have already seen before (i.e., ds for some s < t), then the
subsequent evolution is the same as before. Thus, the dt sequence is periodic in t.

Part (b)

Next, for any customer facing a minimum delay of d days before getting to stay in the cabin, what
is the maximum amount p(d) that we can charge her so as to ensure that she makes a reservation?

Part (c)

Suppose we now use the pricing policy p(d) from part (b); what is the resulting sequence dt (as-
suming d0 = 0)? Let Rt denote the total earnings up to the start of time slot t (with R0 = 0);
compute the long-term average earning R = limt→∞

Rt
t .

Hint: For any bounded eventually-periodic sequence (i.e., one which is periodic after some initial
transient behavior), the long-term average value is the same as the average over any period.

Part (d)

Can you change the pricing policy to get a better long-term average earning?

5

mailto:sbanerjee@cornell.edu

