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Problem 1: Random variables, common distributions and the monopoly price

In this problem, we will revise some basic concepts in probability, and use these to better understand
the monopoly price (alternatively referred to as the optimal posted price or Myerson price). Recall
from class that we want to study a setting where we want to sell a single item to a single buyer.
The buyer has a random reservation value V ≥ 0 for the item, drawn from a distribution with CDF
F (·) (we denote this as V ∼ F ). If we charge a price p, then the buyer gets a utility U = V − p
from buying the item. We assume that the buyer purchases the item if and only if U ≥ 0.

Part (a)

Fix the price of the item to be p, and let X be an indicator random variable for the sale (i.e., X = 1
if the buyer purchases the item, else 0); what is the probability distribution of X? Also, let R(p)
be the revenue we obtain from the sale; what is the expected value and variance of R(p)?

Solution: Note that X is a Bernoulli(q) r.v. with parameter q = P(X = 1) = P(V ≥ p) =
1− F (p−) (where F (p−) = limε→0 F (p− ε) – this is the correct way to write it in case of discrete
random variables). Moreover, if X ∼Bernoulli(q), we have E[X] = q, Var(X) = q(1 − q) (you
should remember these formulas).

Now for us, the revenue is R(p) = pX, hence E(R(p)) = pE(X) = p1 − F (p−); similarly
Var(R(p)) = p2Var(X) = p2(1− F (p−))F (p−).

Part (b)

Suppose we have n items and n buyers, and offer the first item to the first buyer at price p, the
second to the second buyer at price 2p, and in general, offer the kth item to the kth buyer at price
k · p. Let Rk be the revenue obtained from the kth item, and R =

∑n
k=1Rk be the net revenue.

Assuming each buyer i has an i.i.d reservation value Vi ∼ F (·); what is E[R] and Var(R)?

Solution: Henceforth, let π(p) , 1 − F (p−). Using part (a), E(Rk) = kpπ(kp) and Var(Rk) =
k2p2π(pk)(1− π(pk)). Now we have

E(R) =
∑
k

E(Rk) = p
∑
k

kπ(kp).

(By linearity of expectation)

Var(R) =
∑
k

Var(Rk) = p2
∑
k

k2π(pk)(1− π(pk)).

(Since Vk, and hence Rk are i.i.d., we can add the variances)

Part (c)

Next, assume all buyers have the same reservation value V drawn from a UNIFORM[0, (n + 1)p]
distribution. Now what is the expected value and variance of R?
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Solution: Now the Rk are correlated, but we can still use linearity of expectation! Note that
E[Rk] is the same as in part (b), but in addition, we now have specified π(kp) = 1− kp

(n+1)p . Hence

E(R) = p

n∑
k=1

k

(
1− k

(n+ 1)

)
= p

(
n(n+ 1)

2
− 1

n+ 1
· n(n+ 1)(2n+ 1)

6

)
=
pn(n+ 2)

6

To compute the variance, we can not use the sum of individual variances, since they are corre-
lated. In such cases, we have to write out in detail what the random variable R is, and then use
Var(R) = E[R2]− (E[R])2.

To find the pmf for R, observe that if V ∈ [kp, (k + 1)p), then the first k customers purchase
the item yielding a revenue of

R =

k∑
i=1

ip =
pk(k + 1)

2
, when V ∈ [kp, (k + 1)p).

In the case V ∈ [0, p) no customer buys. Since V is uniform, P(V ∈ [kp, (k + 1)p)) = p
(n+1)p = 1

n+1

for each k ∈ {1, 2, . . . , n}. Putting things together, we have that R takes one of the n+ 1 values in
{0, (p ·1 ·2)/2, (p ·2 ·3)/2, . . . , (p ·n · (n+1))/2} uniformly (i.e., with probability 1/(n+1)). Finally,

Var(R) = E(R2)− E(R)2

=
n∑
k=1

(
p
k(k + 1)

2

)2 1

n+ 1
− p2n2(n+ 2)2

36
=

p2

4(n+ 1)

n∑
k=1

(k2 + k)2 − p2n2(n+ 2)2

36
.

Part (d)

Returning to the one item/one buyer setting, let R(p) be the revenue we obtain if the posted price
is p. Find the optimal price p∗ = arg maxp≥0R(p), and check if the function R(p) concave, when:

1. V is uniformly distributed in [0,m].
2. V is distributed as EXPONENTIAL(λ).

Solution: From part (a), the expected revenue is R(p) = p(1 − F (p)). Also recall that for
continuous F , dF (p)/dp = f(p), the pdf of the value distribution.

Irrespective of whether R(p) is concave, the optimal price is either an extreme point (i.e., on
the boundary of the domain), or it satisfies

R′(p) = 0⇐⇒ 1− F (p)− pf(p) = 0.

1. In this case F ′(p) = 1
m , so R′(p) = 1− 2p

m , hence R is concave. The critical point is p∗ = m/2;
one can check that the extreme points yield revenue zero, so this is the optimal solution.

2

mailto:sbanerjee@cornell.edu


ORIE 4154
Spring 2017

Homework 1: Solutions
Sid Banerjee (sbanerjee@cornell.edu)

2. Here f(p) = λe−λp, and thus R′(p) = e−λp − pλe−λp = (1− λp)e−λp. The only critical point
is p∗ = 1/λ; you can check that this is the only maximum (for example, by plotting the
function). However, R′′(p) = (λ2p − 2λ)e−λp which is not always negative – hence R(p) is
neither concave nor convex.

Part (e)

Let q denote the probability that we make a sale; we define the inverse demand function p(q) to
be the maximum price p at which the sale probability is q 1. For a general (continuous) CDF F (·),
write an expression for the inverse demand function in terms of F and q.

Solution: We have the equation q = P(V ≥ p) = 1− F (p), so p(q) = F−1(1− q).

Part (f)

Next, note that we can write the revenue as a function of the sale probability q as R(q) = q · p(q).
Write down R(q) for the two distributions in part (d), and show that the function is concave in
both cases.

Solution:

1. The inverse of F (p) = p/m is F−1(q) = mq, so R(q) = qm(1−q), which is a concave parabola.

2. The inverse is F−1(q) = − 1
λ ln(1 − q), hence R(q) = − 1

λq ln(q). Taking derivatives we get
R′′(q) = −1/(λq) ≤ 0; hence this is concave.

Part (g)

For a general CDF F , show that

dR(q)/dq = p(q)− 1− F (p)

f(p)

Thus, conclude that the revenue curve R(q) is concave if and only if p− 1−F (p)
f(p) is non-decreasing.

Such a distribution is said to be regular.

Solution: We know F (p) = 1 − q and hence f(p)(dp/dq) = −1 ⇒ dp/dq = −1/f(p). Moreover
by the chain rule, we have

d

dq
R(q) =

d

dq
(qp(q)) = p(q) + q · dp/dq = p(q)− q

f(p)
= p(q)− 1− F (p(q))

f(p(q))
.

To conclude, recall that differentiable functions are concave iff they have non-increasing derivatives.
As p(q) is non-increasing in q, the desired condition follows.

1We should be careful here, as such a p may not exist, for example, if the distribution is discrete; more generally, we
can define p(q) to be the maximum price such that the sale probability is at least q, i.e., p(q) = maxp≥0{(1−F (p)) ≥ q}.
For continuous distributions, however, the above definition is fine.
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Part (h)

For a distribution with CDF F , the hazard-rate ρ(p) is defined as

ρ(p) =
f(p)

1− F (p)

Argue that if a distribution has non-decreasing hazard rate, then its revenue curve R(q) is concave.
Such a distribution is said to be a monotone hazard-rate (or MHR) distribution.

Note: To see why ρ(·) is called the hazard-rate (and also, to remember the definition), consider F
to be the CDF corresponding to the lifetime of a lightbulb before it fuses – then ρ(t)dt is then the
probability it will fuse in time [t, t+ dt] given that it has survived till time t.

Solution: Note that, if ρ(p) is non-decreasing, then − 1
ρ(p) is non-decreasing and thus p− 1−F (p)

f(p)

is non-decreasing. This however is the exact condition you derived in part (g).

Part (i)

(OPTIONAL) Give an example of a regular distribution that is not MHR.

Hint: Do not think of well-known distributions (these are usually MHR). Instead, recall F can be
any non-decreasing bounded continuous function, scaled to lie in [0, 1].

Solution: Consider the distribution f(x) = 1/x2 for x ∈ [1,∞). Note that this is a valid distri-
bution, since f(x) ≥ 0 and

∫∞
1 dx/x2 = 1; moreover, F (x) = 1− 1/x. Now the hazard rate is given

by ρ(x) = f(x)/(1− F (x)) = 1/x which is decreasing. On the other hand, x− 1/ρ(x) = 0 which is
non-decreasing – hence the corresponding revenue curve is concave.

(In fact, the revenue curve is given by R(q) = qF−1(1− q) = 1! As a result, this is sometimes
called the equal-revenue distribution, as we get the same revenue for any price p ∈ [1,∞).)
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Problem 2: Linear Programming, duality, and the invisible hand of the market

In this problem, we will revise some basic concepts in linear programming, and show how these can
be used to demonstrate the power of markets in solving resource allocation problems.

The basic problem we want to consider is that of allocating m items (denoted I = {1, 2, . . . ,m})
among n buyers (denoted as B = {1, 2, . . . , n}). One desirable way of doing so is to allocate items
to buyers who ‘value’ them the most. We now show how this notion can be formalized, and how
this optimization can be achieved via simple pricing policies. Throughout this problem, we assume
that each buyer i has value vij ≥ 0 for each item j: let V = {vij} denote the n×m matrix of buyer
values, and assume that all entries of V are distinct. We also assume that each item j has a price
pj , which a buyer must pay to purchase the item. Each item has only one copy, and hence can be
sold to either a single buyer, or not sold at all; each buyer can buy as many items as possible.

Part (a)

First, we consider the case of additive buyers. We assume that a buyer i ∈ B will only buy an item
j ∈ I if its resulting utility vij − pj ≥ 0; moreover, if buyer i purchases a subset of items Ii ⊆ I,
then her net utility is Ui =

∑
j∈Ii(vij − pj)

2 . If no item is allocated to buyer i, then Ii = ∅ and
Ui = 0. We define the utility Us of the seller to be the total amount of money she earns from item
sales, and define the social welfare W = Us +

∑
i∈B Ui to be the sum of everyone’s utilities.

Let xij be an indicator that buyer i purchases item j, i.e., xij = 1 if i purchases j, else it is
0. Given buyer valuations V , prices {pj} and indicators {xij}, write down the expression for the
social welfare. Using this, characterize the allocation of items that maximizes the social welfare.

Solution: Note that the seller’s utility can be written as Us =
∑

j∈I pj
∑

i∈B xij , and the sum of
the buyer utilities is

∑
i∈B
∑

j∈I(vij − pj)xij . We can add these to get

W =
∑
i∈B

∑
j∈I

vijxij

Note that the prices have dropped out of this equation! This is a somewhat remarkable property
of welfare - the way to think about it is that the disutility of the purchase price to a buyer is offset
by the utility given to the seller – hence it disappears when measuring welfare.

The above expression also tells us that welfare is maximized by allocating each item j to the
buyer i with the highest valuation vij for that item. However, once we fix prices, this may not
necessarily be a feasible solution (for example, if the price of an item is so high that it is larger
than all utilities, then no buyer would want it, even though it may be ‘socially better’ for the buyer
to make the purchase). The rest of the question tries to find prices which make this feasible.

2For example, you visit NYC, and buy entry tickets for multiple museums; (assuming you have enough time) you
can now visit them all!
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Part (b)

Now suppose we relax the indicator variables xij to take values in [0, 1] (in other words, we assume
that each item j can be fractionally allocated to a buyer i). Write down a linear program that finds
an allocation to maximize the social welfare. Moreover, characterize all the extreme points of the
above LP.

Solution: The LP relaxation is given by

max
x

∑
i∈B

∑
j∈I

(vijxij)

s.t.
∑
i

xij ≤ 1 ∀ j

xij ≥ 0 ∀ i, j

The extreme points of the LP will all be integral. On way to see this is to note that the constraints
are a subset of the constraints of the assignment problem, which you should know from before has
integer extreme points.

To see a proof from first principles, suppose that a solution has fractional xij for some j. Pick
any two of the buyers who receive a fraction of the item (Assume WLOG that they are buyers 1
and 2). But it must be that either v1j > v2j or v1j < v2j since the valuations are distinct. Again,
suppose WLOG that buyer 1 has a larger valuation. Then we can shift buyer 2’s share of the item
over to buyer 1, changing our solution by x2j(v1j − v2j) > 0. This argument can then be repeated
to show that no one receives a fractional allocation.
Note also that we do not need xij ≤ 1 ∀ i, j since this is implied by the first constraint.

Part (c)

Your above LP should have m constraints, one for each item; let πm be a dual variable associated
with each of these constraints. Write down the dual linear program. Moreover, suppose {x∗ij}
and {π∗j } are optimal solutions to the primal and dual programs – write down the complementary
slackness conditions.

Solution: The dual LP is

min
π

∑
j∈I

πj

s.t. πj ≥ vij ∀ i, j
πj ≥ 0 ∀ i, j

Given optimal primal and dual solutions (x∗, π∗), the complimentary slackness conditions are

1. (1−
∑

i∈B x
∗
ij) · π∗j = 0 ∀ j

2. (π∗j − vij) · x∗ij = 0 ∀ i, j
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Part (d)

Given any optimal dual solution π∗, suppose we set the price for each item j as pj = π∗j . Argue
that under these prices, there is an allocation of items to agents that obeys the following: (1) if
buyer i is allocated item j, then vij − pj ≥ 0, (2) for any item j not allocated to buyer i, we have
vij − pj ≤ 0, and (3) the social welfare is maximized.

Solution: Set the prices pj = π∗j and solve the primal LP to get (integer) allocations x∗ij . From
the second complementary slackness condition, we see that (1) is true, as x∗ij is non-zero (i.e., i
buys item j) iff vij ≥ pj . Moreover, (2) follows from the constraint in the dual, and the fact that
the prices πj are dual feasible. Finally, (3) holds due to the allocation being the optimal solution
to the primal LP, whose feasibility in the assignment is guaranteed by (1).

Part (e)

Next, we consider the case of unit-demand buyers. We assume that if buyer i ∈ B purchases a
subset of items Ii ⊆ I, then her net utility is Ui = maxj∈Ii(vij) −

∑
j∈Ii pj , i.e., she pays for all

purchased items, but only gets utility from the highest valued item 3. As before, the seller’s utility
Us is still the total amount of money she earns, and the social welfare is W = Us +

∑
k∈B Ui.

Argue that in any welfare maximizing allocation policy in this setting, each buyer is allocated at
most one item. The resulting optimization problem is known as the maximum-weighted matching
problem (and is a maximization version of the assignment problem that you might have seen in
some previous course).

Solution: Again, note that the disutility from item price to the consumers is offset by the utility
to the seller. Then the resulting utility is:

∑
i∈Bmaxj∈Iivij . Now suppose we are given a welfare

maximizing allocation, wherein a buyer i is allocated more than one item. Since she gets value only
from one of those items (the one with the highest vij), hence if we remove the other items from her
allocation, her utility remains the same. Hence, it is sufficient to ensure that each buyer receives
at most one item.

Part (f)

As in part (b), let xij ∈ [0, 1] be a fractional allocation of item j to buyer i. Write an LP to choose
a fractional allocation in order to maximize welfare.

Note: Recall (or learn...) that the assignment problem LP also has integer corner points – thus,
the above relaxation actually gives a valid allocation.

3You are in NYC again, and buy tickets for multiple broadway shows with identical showtimes (because you were
undecided...); you must pay for each ticket, but can only watch one (and are not allowed to sell the other tickets!).
This problem should convince you that this is a harder setting, and so you should stick to the museums :)
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Solution: From the previous section, we know that the optimal solution will not allocate more
than 1 item to each consumer. Therefore, we can add that as a constraint without affecting the
optimal solution. The LP relaxation is given by

max
x

∑
i∈B

∑
j∈I

vijxij

s.t.
∑
i

xij ≤ 1 ∀ j∑
j

xij ≤ 1 ∀ i

xij ≥ 0 ∀ i, j

Part (g)

Write down the dual for the above LP, and also write the complementary slackness conditions.

Solution: The dual LP will be

min
µ,λ

∑
i∈B

λi +
∑
j∈I

µj

s.t. λi + µj ≥ vij ∀ i, j
µj , λi ≥ 0 ∀ i, j

with an optimal primal/dual solution (x∗ij , µ
∗
j , λ
∗
i ) complimentary slackness conditions

x∗ij
(
µ∗j + λ∗i − vij

)
= 0

Part (h)

(OPTIONAL) Suppose you are given an optimal primal solution x∗, and associated dual solution
µ∗. As in part (d), show that there is a way to use these to set item prices pj , under which
there is an allocation xij that satisfies: (1) each buyer is allocated at most one item, and each
item is allocated to at most one buyer, (2) if buyer i is allocated item j, then vij − pj ≥ 0, (3)
for any item j not allocated to buyer i, we have vij−pj ≤ 0, and (4) the social welfare is maximized.

Solution: Part (1) follows from the feasibility of x∗ij , µ
∗
j ; r(4) follows directly from the optimal-

ity of x∗ij . To see the remaining properties, rewrite the complementary slackness condition as

x∗ij

(
λ∗i − (vij − µ∗j )

)
= 0. Now note that given prices pj = µ∗j , an agent i’s utility from buying

item j is given by ui = vij − µ∗j . Now we will argue that the dual variable λ∗i can be interpreted to
be agent i’s utility. To see this, note that for given prices π∗j , an agent i gets the highest utility from
picking the item that has the highest vij−µ∗j . Complementary slackness gives us that λ∗i = vij−π∗j
when x∗ij > 0, else if x∗ij = 0, then λ∗i ≥ vij − µ∗j .
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Problem 3: “You can’t always charge what they want (to pay)”

Suppose we own a cabin in the mountains, which we want to rent out on CleanAirBnB. Interested
customers arrive sequentially looking to reserve the cabin; they arrive deterministically every 2
days, and each customer wants to rent it for a period of 3 nights. Formally, consider discrete
time-slots (days) indexed as t = 0, 1, 2, . . .. A single customer arrives at the beginning of every even
slot (i.e., at time-slots 0, 2, 4, . . .), and if a customer rents the cabin starting at time-slot t, then it
becomes free at the beginning of time-slot t+ 3.

Each customer has value v = 5 for staying in the cabin; however, they also have a cost of c = 1
per day they need to wait before getting the cabin. For a customer arriving at time t, let dt denote
the number of time slots after which the cabin becomes available, and suppose she is charged a fee
of pt to reserve the cabin from time-slot t + dt to t + dt + 3: we assume she agrees to reserve the
cabin if and only if her utility ut = v − c · dt − pt = 5− dt − pt ≥ 0, else she goes elsewhere looking
for cabins to rent. Our aim is to design the pricing policy pt so as to maximize our revenue.

Part (a)

First, suppose we do not charge customers for reserving the cabin. Assuming d0 = 0 (i.e., the cabin
starts as empty), plot how the sequence dt changes with t.

Hint: You do not need to plot dt for an infinite number values of t! Observe that whenever dt
becomes equal to some value you have already seen before (i.e., ds for some s < t), then the
subsequent evolution is the same as before. Thus, the dt sequence is periodic in t.

Solution: The plot is given in Figure 1; note that the pattern from t = 8 to t = 14 repeats.

Figure 1: Plotting dt as a function of t with no prices
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Part (b)

Next, for any customer facing a minimum delay of d days before getting to stay in the cabin, what
is the maximum amount p(d) that we can charge her so as to ensure that she makes a reservation?

Solution: We can charge a customer as much as would ensure that her utility is positive, i.e.,
p(d) must ensure that 5− d− p(d) ≥ 0, and hence p(d) ≤ 5− d.

Part (c)

Suppose we now use the pricing policy p(d) from part (b); what is the resulting sequence dt (as-
suming d0 = 0)? Let Rt denote the total earnings up to the start of time slot t (with R0 = 0);
compute the long-term average earning R = limt→∞

Rt
t .

Solution: Since we are charging just enough to ensure that customers rent if d ≤ 5, we have the
same delay sequence as in part (a). In Figure 2, we have annotated the plot with the amount that
each reserving customer pays. Note that over each repeating period (i.e., the period between 8 t0
14), we earn only 1 unit – hence the long-term average rate R = limt→∞

Rt
t = 1/6.

To see this in more detail, let T = 8+6k for some large integer k. Then the total reward earned
between t = 0 and t = T is 5 + 4 + 3 + 2 + 1 · k = 14 + k, and thus RT

T = 14+k
8+6k →

1
6 as k →∞.

Part (d)

Can you change the pricing policy to get a better long-term average earning?

Solution: Consider a policy where we always charge p = 5 irrespective of the delay. The delay
curve for this is drawn in red in figure 2. Note that now we make R = 5

4 , which is larger than 1
6 !

(In fact, you can do slightly better by charging p = 5 when delay is 0, and p = 4 for all other
delays – try verifying that now you make R = 9/6 > 5/4.)
Note: This question was based on a model originally developed by Naor in the 70s. This work has
led to a large area of research on pricing in queues – if you are interested (or looking for potential
projects), see the book by Hassan and Haviv.
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Figure 2: Plotting dt as a function of t with price p(d) = 5− d (in blue) and p(d) = 5 (in red)
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