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Problem 1: Practice with Dynamic Programming Formulation

A product manager has to order stock daily. Each unit cost is c, there is a fixed cost of K for
placing an order. If you order on day t, the items will be available at the beginning of day t + 1
with probability 1− θ, and at the beginning of day t+ 2 with probability θ.

The store has N clients. Each day, a client demands a product independently with probability
q. The selling price is p > c. Each time a client wants a product and there is no stock, the store
experiences a loss of `, representing a penalty for being unable to provide service.

The warehouse has capacity for L > N units. At the beginning of day t = 0 there are S units
in stock. At the end of period T all the units become obsolete and must be thrown away.

Write down a dynamic program to maximize the utility over T days. You should clearly define
the states, actions and the value function, and write the terminal value function and the Bellman
equation.

Problem 2: Two-class Capacity Allocation with Upsell

In this problem, we will extend our basic two-class capacity allocation model from class to a setting
where a fraction of the rejected discount customers are willing to purchase full-fare tickets.

As before, we have a total capacity C and let p` < ph denote the price of the discount (low)
and full-fare tickets (high) respectively. We again use D` to denote the random demand for the low
fare, and let Dh denote the demand which is exclusively for the full fare, i.e., the demand for high
fare assuming that all low-fare bookings are accepted. We assume that D` and Dh are independent
discrete random variables.

To model the upsell opportunity from rejected discount customers, we assume that a known
fraction α ∈ [0, 1] of the rejected low-fare demand will seek to book high-fare tickets, if the low-
fare seats are not available. Thus, given a booking limit b for discount tickets, the total high-fare
demand D̄h is given by:

D̄h = Dh + α [D` − b]+

where for any x ∈ R, x+ = max{x, 0} denotes its positive part. Note that the booking limit decision
influences the total full-fare demand when discount demand exceeds the booking limit.

Part (a)

Let R(b) denote the expected total revenue given that the booking limit for discount customers is
set at b. Show that

R(b) = p`E [min{D`, b}] + phE
[
min

{
Dh + α [D` − b]+ , C −min{D`, b}

}]
Part (b)

(OPTIONAL) Show that the forward difference ∆R(b) = R(b+ 1)−R(b) is given by

∆R(b) = (p` − αph)P[b < D`]− ph(1− α)P [{b < D`} AND {Dh + α (D` − b) ≥ C − b}]

(Note: You should try and replicate the technique we use in Lecture 3 for discrete values).
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Part (c)

Using the expression for the derivative of the revenue function in part (b), determine the optimal
booking limit when α ≥ p`/ph. Can you think of an intuition behind this answer?

Part (d)

Next, consider the case when α < p`/ph. In general, computing the optimal booking limit b∗ is dif-
ficult because it requires computing the probability P[{b < D`} AND {Dh + α (D` − b) ≥ C − b}].
However, suppose we assume that the market is highly competitive and only a very small fractional
of the rejected discount customers will actually purchase our full-fare tickets, that is, α is close to
zero. In this case, we can approximate the probability as follows:

P[(b < D`) and (Dh + α (D` − b) > C − b)] ≈ P[{b < D`} AND {Dh > C − b}]
= P[b < D`] · P[D` > C − b] ,

where the equality follows from our assumption that D` and Dh are independent random variables.
Therefore, we have the following approximation for the derivative:

∆R(b) ≈ (p` − αph)P[b < D`]− ph(1− α)P[b < D`]P[Dh > C − b] .

Using the above, show that the optimal protection level x∗ is approximately equal to

F−1
h

((
1

1− α

)(
1− p`

ph

))
.

Note that when α = 0, the above expression gives the original Littlewood’s rule.

Problem 3: Practice with convex/concave functions

In class we used several properties of concave functions in deriving the protection levels. We now
briefly revise some of these, as they will be useful for later topics as well.

We use the following definition: a function f : R → R is convex if for every pair x, y ∈ R and
every λ ∈ [0, 1], we have f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). f is concave if −f is convex.

Part (a)

Given convex functions f1(·), f2(·), show that the following are convex: (1) g(x) = f1(ax + b) for
any a, b ∈ R; (2) g(x) = af1(x) + bf2(x) for a, b > 0; (3) h(x) = max{f1(x), f2(x)}

Part (b)

(Discrete Jensen’s Inequality) For any convex function f(·), n points {xi : i ∈ {1, 2, . . . , n}} and
{θ1, θ2, . . . , θn} such that θi ≥ 0 and

∑n
i=1 θi = 1, prove that

f

(
n∑

i=1

θixi

)
≤

n∑
i=1

θif(xi)

Hint: This is true for 2 points by definition - how can you extend to n?
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Problem 4: Two ways of computing protection levels

Suppose we have a capacity of 100 seats and 5 demand classes. As before, we assume that demands
arrive sequentially, with class 5 (the lowest fare class) arriving first, and class 1 arriving last. The
fare and demand distribution for each class are given in the the following table.

Class Fare Demand Distribution

1 $300 Geometric(1/10)
2 $200 Geometric(1/20)
3 $160 Geometric(1/25)
4 $140 Geometric(1/30)
5 $120 Geometric(1/40)

(Note that Y ∼ Geometric(p) (p ∈ (0, 1)) means that P [Y = k] = (1− p)k p, for k = 0, 1, . . ..)
Our aim is to compute the optimal protection levels.

Part (a)

Write down the dynamic program for the problem. You should give an expression for V1(s), and
also write the Bellman equation.

Part (b)

Write a program (in a language of your choice - ideally Python) to compute the protection levels.
You should plot the value functions Vk(s) to check concavity.
Hint: Note that you do not need to look at infinite values of s, since there is a a maximum capacity.

Part (c)

Now try and compute the protection levels using the sampling approach we discussed in class. You
should generate a collection of K samples, for different K (say K ∈ {1000, 2000, 3000, . . . , 10000})
and plot how your estimate of the protection levels x∗k changes with K.
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