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Problem 1: Choice models and assortment optimization

Part (a)

Consider a MNL choice model over five products with prices (p1, . . . , p5) = (7, 6, 4, 3, 2) and pref-
erence weights (i.e., MNL parameters) (v1, . . . , v5) = (3, 5, 6, 4, 5). The preference weight of the
no-purchase alternative is v0 = 10. Compute the optimal expected-revenue assortment.

Solution: Since the prices are decreasing, we consider all the nested options {1, . . . , i}. Given
such a set, the expected revenue is ∑i

j=1 vjpj

v0 +
∑i

j=1 vj
.

Computing these values, the best set is {1, 2, 3}.

Part (b)

Next, consider a mixed-MNL choice model, wherein we have two consumer types and three products.
The probability of observing each consumer type is (α1, α2) = (0.5, 0.5). The product prices are
(p1, p2, p3) = (8, 4, 3). A consumer of type 1 has preference weights (v11, v21, v31) = (5, 20, 0), and
a consumer of type 2 has preference weights (v12, v22, v32) = (1/5, 10, 10); the preference weight
of the no-purchase alternative is 1 for both types.

i. First, find the optimal assortments S∗1 , , S
∗
2 for each individual type, and compute the expected

revenue of S∗1 and S∗2 for the mixed-MNL model.

Solution: (i) Proceeding as in part (a), we get that for type 1, the optimal assortment is
S∗1 = {1}, and for type 2, the optimal assortment is S∗2 = {1, 2}. Now we have:

R({1}) =
1

2

(
5p1

1 + 5
+

p1/5

1 + 1/5

)
= 4

R({1, 2}) =
1

2

(
5p1 + 20p2
1 + 5 + 20

+
p1/5 + 10p2
1 + 1/5 + 10

)
≈ 4.16

ii. Next, consider the assortment {1, 3}, and show that this achieves a higher revenue under
the mixed-MNL model than the two assortments in the previous part. (In fact, {1, 3} is the
optimal assortment, but you do not need to show that).

(ii) The assortment has revenue

R({1, 3}) =
1

2

(
5p1

1 + 5
+
p1/5 + 10p3
1 + 1/5 + 10

)
≈ 4.74

Thus, this has a higher revenue than S∗1 , S
∗
2 .
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Problem 2: Pivot rules and procurement auctions

Consider a single-item auction setting, where each bidder i has a private value vi. In class, we
studied the Vickrey (or second-price) auction for such settings, and saw that it has two properties:
i. incentive compatibility (DSIC), i.e., ui(bi,b−i) ≤ ui(vi,b−i), and ii. individual rationality, i.e.,
ui(vi,b−i) ≥ 0. We now will see a more general mechanism that has the DSIC property.

Given bids b, let i∗ = arg maxi{bi}, and consider the mechanism (x,p), with allocation rule
xi = 1{i=i∗} (i.e., award item to highest bidder), and payment rule pj = 0 for all j 6= i∗, and
pi∗ = fi∗(b−i∗), where fi(b−i∗) is some function which only depends on the bids of other bidders
(and any other publicly-known constant). The term fi∗(b−i∗) is sometimes referred to as a pivot
rule.

Part (a)

Argue that fi(b−i) = maxj 6=i{bj} always ensures individual rationality in any single-item auction
setting. This gives us the Vickrey auction (and more generally, the pivot rule is a special case of
the so-called Clark pivot rule).

Solution: Assume that player i reports vi. In the case his valuation is not the maximum his
utility is zero. In the other case, he will get the item and pay the second maximum, so the utility
is vi −maxj 6=i{bj} ≥ 0. Since the utility is always non-negative, we have the property.

Part (b)

Find the maximum pivot rule fi(b−i) that ensures individual rationality in the following settings:

i. Bidder i’s value vi is known to satisfy vi ∈ [vmin(i), vmax(i)], i.e., the maximum and minimum
values of each bidder’s valuations is public knowledge.

ii. There is a publicly-known constant δ such that any two bidders i and j, we have |vi− vj | ≥ δ
(i.e., any two bidders’ values are at least δ apart).

Solution: (i) The function is max{maxj 6=i{bj}, vmin(i)} since each term in the maximum is a
lower bound on vi. The analysis mimics part (a). (ii) The function is maxj 6=i{bj} + δ. In case
player i wins, if we assume truth-telling, maxj 6=i{bj} is the second maximum valuation. Since we
are guaranteed that the highest is at least δ apart, we again get a lower bound on vi. From here is
easy to conclude as in part (a).

Part (c)

Argue that the pivot rule is dominant-strategy incentive compatible for the following choices of f

i. The function from (b) part i.

ii. The function from (b) part ii.

iii. fi(b−i) = maxj 6=i{bj}
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Solution: (i) Assume player i losses by betting vi. Clearly he cannot do better by betting bi < vi,
so let us examine if bi > vi yields a non-zero utility. To get the item i needs to bid bi at least the
current maximum, in which case he will have to pay at least maxj 6=i bj > vi which yields a negative
utility, so he is better of betting vi. Now assume player i wins by betting vi, so he gets non-negative
utility by part (b). Betting bi > vi will not change neither the pay-off nor the allocation, so he has
no incentive to do this. Finally, as long as he is the maximum, betting bi < vi will not change his
utility, but, if he bets lower than the current second maximum, he will get a zero utility. In any
case he has no incentive to report different than vi, so the property holds.

For parts (ii) and (iii) the analysis is identical. Note that the crucial observation is that, if
i gets the item, he does not affect his pay-off by changing his bet (unless he bets so low that he
losses the item).

Part (d)

Finally, consider a procurement auction, where you want to buy an item (or enter into a contract
for some work) from among a group of n sellers. Each seller has a private cost ci which is known to
lie in a (publicly-known) range [cmin(i), cmax(i)]. Consider a mechanism that collects bids from the
sellers, chooses the seller i∗ with the lowest bid, and then pays i∗ an amount pi∗(bi∗ ,b−i). What is
the minimum payment that you can offer such that the mechanism is DSIC and IR.

Solution: Note that this is analogous as part (b.i). By identifying payments as negative prices
and costs as negative valuations, we get that the payment is zero if i is not the minimum cost and
min{minj 6=i{bj}, cmax(i)} in case i is the minimum cost.

Problem 3: Welfare maximization and externality pricing

Part (a)

Consider an arbitrary single-parameter environment, with feasible set X . Given values vi, the
welfare-maximizing allocation rule is x(v) = arg max(x1,...,xn)∈X

∑n
i=1 vixi. Prove that this alloca-

tion rule is monotone. You can assume for convenience that all values are distinct (or more generally,
that ties are broken in some deterministic and consistent way, for example, lexicographically.)

Solution: Assume that i bets vi and gets the item and let x∗ be the allocation. Denote the
welfare of an allocation as w(x, v) =

∑n
i=1 vixi. It must be that

w(x∗, v) =

n∑
i=1

vix
∗
i ≥ max

x∈X ,xi<x∗i

n∑
i=1

vixi.

Proceed by contradiction and assume that i now bets bi > vi and the optimal allocation is x̄ with
x̄i < x∗i . By our first inequality, w(x̄, bi, v−i) = (bi − vi)x̄i +

∑
j vj x̄j ≤ (bi − vi)x̄i + w(x∗, v) <

w(x∗, bi, v−i), which is a contradiction with the fact that x̄ maximizes welfare.

3

mailto:sbanerjee@cornell.edu


ORIE 4154
Spring 2017

Homework 5: Due May 10th, 11.59pm (on CMS)
Sid Banerjee (sbanerjee@cornell.edu)

Part (b)

Next, consider feasible sets X that contain only 0− 1 vectors, i.e., each bidder either wins or loses.
Now, given any monotone allocation rule x(b), for any bidder i and other bids b−i, argue that the
Myerson payment rule can be written as:

p(bi,b−i) =

{
0 if xi(bi,b−i) = 0

b∗i (b−i) if xi(bi,b−i) = 1

where b∗i (b−i) is bidder i’s critical bid, i.e., the lowest bid at which i gets a non-0 allocation.

Solution: We know from class that we can write pi(bi, b−i) = bixi(bi)−
∫ bi
0 xi(z)dz. By definition

of critical bid, this is the same as

pi(bi, b−i) = bixi(bi)− 1{bi>b∗i }

∫ bi

b∗i

xi(z)dz = bixi(bi)− 1{bi>b∗i }(bi − b
∗
i ).

Part (c)

For feasible sets X containing only 0 − 1 vectors, we can identify each feasible allocation with a
‘winning set’ of bidders. Assume further that the environment is ‘downward closed’, meaning that
subsets of a feasible set are again feasible. Prove that, when S∗ is the set of winning bidders and
i ∈ S∗, then is critical bid equals the difference between (i) the maximum surplus of a feasible set
that excludes i (you should assume there is at least one such set); and (ii) the surplus

∑
j∈S∗\{i} vj

of the bidders other than i in the chosen outcome S∗. Also, is this difference always nonnegative?

Solution: The critical bid is the minimum bi such that

max
S∈X ,i∈S

∑
j∈S

bj > max
S∈X ,i/∈S

∑
j∈S

bj ⇐⇒ bi +
∑

j∈S∗,j 6=i

bj > max
S∈X ,i/∈S

∑
j∈S

bj .

Rearranging terms we get the result. To see that this is non-negative, note that the downward
closed property ensures S∗ \ {i} ∈ X .

Part (d)

To see how to use the above result, consider the knapsack auction we discussed in class (for allocating
TV advertisements to ad slots). We want to choose ads to fill a slot of length at most 120 seconds.
Bidders have private values vi and public ad-lengths `i. In particular, consider a setting with 4
bidders {a, b, c, d}, with private values (va, vb, vc, vd) and lengths (60s, 40s, 40s, 40s). Now suppose
all bidders truthfully report their bids, and the auctioneer finds that the optimal allocation is to
choose ads b, c and d (note that this is feasible). Use part c to compute the Myerson payments for
all the bidders.
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Solution: The payment of a is zero. For bidder b the payment is

max{va + vc, va + vd, vc + vd} − (vc + vd).

For c and d the expression is symmetric.

Problem 4: The Myerson optimal-revenue auction

In this question, we will get some practice with the Myerson optimal-revenue auction.

Part (a)

Consider an auction with k identical goods, with at most one given to each bidder. There are
n bidders whose valuations are i.i.d. draws from a regular distribution F . Describe the optimal
auction in this case.

Solution: For the optimal DSIC auction for any general setting, we perform the following steps:

1. Ask each bidder i for their value vi

2. Compute the virtual value φi(vi) = vi − (1− Fi(vi))/fi(vi)

3. Find the allocation x∗ ∈ X that maximizes the virtual welfare
∑n

i=1 φi(vi)x
∗
i

4. Charge each bidder the Myerson price. In particular, for xi ∈ {0, 1}, we know from above
that for welfare maximization, for any bidder i with x∗i = 1, we charge a price pi equal to
the critical bid (see question 3b). In this case, we now need to charge pi such that φi(pi)
corresponds to the critical virtual bid, i.e., the lowest virtual bid at which i gets a non-0
allocation.

Now for k identical goods, recall we showed in class that the welfare-maximizing auction cor-
responded to picking the bidders with the k highest bids, and charging them the (k + 1)st highest
bid. Let the bids be sorted as b(1) > b(2) > . . . > b(n); since F is regular, we know that the virtual
values also have the same order, i.e., φ(b(1)) > φ(b(2)) > . . . > φ(b(n)). To maximize virtual welfare,
we consider two cases:

1. If the virtual value of the kth highest bidder is non-negative (i.e., φ(b(k)) ≥ 0), then we allocate
an item to each of the top k bidders, and charge them all p such that φ(p) = max{φ(b(k+1)), 0},
i.e., p = max{b(k+1), φ−1(0)}.

2. If φ(b(k)) < 0, then we find the largest k′ < k such that φ(b(k
′)) ≥ 0, allocate an item to each

of the top k′ bidders, and charge them all p = φ−1(0).

Note that the above auction is identical to setting a reserve price of φ−1(0) for each item, and then
offering an item to each of the top k bidders at a price equal to the k+1th highest bid or the reserve
price, whichever is higher.
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Part (b)

Next, consider a single-item auction with independent but non-identical values; in particular, as-
sume bidder is valuation is drawn from its own regular distribution Fi.

i. Give a formula for the winners payment in the optimal revenue auction, in terms of the
bidders virtual valuation functions.

ii. Show by example that, in an optimal auction, the highest bidder need not win, even if he has
a positive virtual valuation.

Hint: For the last part, a simple setting with two bidders with valuations from different uniform
distributions suffices.

Solution: For part i, we first collect bids, and compute virtual bids φi(bi) for each bidder i. Let
i and j be the top virtual bids, i.e., φi(bi) > φ2(bj). We then offer the item to bidder i, the highest
virtual bidder at a price pi = max{φ−1i (0), φ−1i (φj(bj))}.

For part ii, consider two bidders i and j, where Fi ∼ Uniform[0, 5] and the other has Fj ∼
Uniform[0, 10]. Note that if F ∼ Uniform[0,M ], then φ(v) = v − (1 − v/M)/(1/M) = 2v −M .
Thus φi(bi) = 2bi − 5 and φi(bj) = 2bj − 10. Now suppose bi = 4 and bj = 6 – then although
bi < bj , we have φi(4) = 2× 4− 5 = 3 and φi(6) = 2× 6− 10 = 2; thus, we allocate to the second
highest bidder in this case.
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