
ORIE 4520: Stochastics at Scale
Fall 2015

Homework 1: Due Sep 8th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (Practice with Asymptotic Notation)

An essential requirement for understanding scaling behavior is comfort with asymptotic (or ‘big-O’)
notation. In this problem, you will prove some basic facts about such asymptotics.

Part (a)

Given any two functions f(·) and g(·), show that f(n) + g(n) = Θ(max{f(n), g(n)}).

Part (b)

An algorithm ALG consists of two tunable sub-algorithms ALGA and ALGB, which have to be
executed serially (i.e., one run of ALG involves first executing ALGA followed by ALGB). Moreover,
given any function f(n), we can tune the two algorithms such that one run of ALGA takes time
O(f(n)) and ALGB takes time O(n/f(n)). How should we choose f to minimize the overall runtime
of ALG (i.e., to ensure the runtime of ALG is O(h(n)) for the smallest-growing function h)?

How would your answer change if ALGA and ALGB could be executed in parallel, and we have
to wait for both to finish?

Part (c)

We are given a recursive algorithm which, given an input of size n, splits it into 2 problems of size
n/2, solves each recursively, and then combines the two parts in time O(n). Thus, if T (n) denotes
the runtime for the algorithm on an input of size n, then we have:

T (n) = 2T (n/2) +O(n)

Prove that T (n) = O(n log n).
Hint: Note that for a constant size input, the algorithm takes O(1) time. How many recursions
does it require to reduce a problem of size n to constant size subproblems? What is the total runtime
overhead at each recursive level?

Problem 2: (Some important asymptotes)

Part (a)

In class, we defined the harmonic number Hn =
∑n

i=1 1/i. Argue that:∫ n+1

1

1

x
dx ≤ Hn ≤ 1 +

∫ n

1

1

x
dx

Thus, prove that Hn = Θ(lnn).
Hint: Bound the 1/x function from above and below by a step function.
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Part (b)

Next, we try to find the asymptotic growth n!. As in the previous part, argue that:∫ n

1
lnxdx ≤ lnn! ≤

∫ n+1

1
lnxdx

Thus, prove that n! = Θ(n lnn).

Part (c)

(Stirling’s approximation) We now improve the estimate in the previous part to get the familiar
form of Stirling’s approximation. First, argue that for any integer i ≥ 1, we have:∫ i+1

i
log xdx ≥ log i+ log(i+ 1)
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Using this, show that:

n! ≤ e
√
n
(n
e

)n
Hint: Given any i > 1, where does the line joining the two points (i, ln i) and (i + 1, ln(i + 1)) lie
with respect to the function log x?

Problem 3: (The Geometric Distribution)

A random variable X is said to have a Geometric(p) distribution if for any integer k ≥ 1, we have
P[X = k] = p(1− p)k−1.

Part (a)

Suppose we repeatedly toss a coin which gives HEADS with probability p. Argue that the number
of tosses until we see the first HEADS is distributed as Geometric(p).

Part (b)

(Memoryless property) Using the definition of conditional probability, prove that for any integers
i, k ≥ 1, the random variable X obeys:

P[X = k + i|X > k] = P[X = i]

Also convince yourself that this follows immediately from the characterization of the Geometric
r.v. in Part (a).

Part (c)

Show that: (i)E[X] = 1
p , and (ii)V ar[X] = 1−p

p2

Hint: Note that by the memoryless property, a Geometric(p) random variable X is 1 with probability
p, and 1+Y with probability (1−p), where Y also has a Geometric(p) distribution. Now try writing
the expectation and variance recursively.
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Problem 4: (Upper Bounds on Collision Probabilities)

Let Xm,n denote the number of collisions when m balls are dropped u.a.r. into n bins. In class, we
showed that then the expected number of collisions is

(
m
2

)
/n. We now upper bound the probability

that no collision occurs.
Assume that n > m (clearly this is required for no collisions!). First, using the law of total

probability, argue that:

P[No collisions when m balls dropped u.a.r. in n bins] =
m−1∏
i=1

(
1− i

n

)
Next, using the inequality e−x ≥ (1− x), simplify the above to show:

P[No collisions when m balls dropped u.a.r. in n bins] ≤ e−E[Xm,n]

Problem 5: (Posterior Confidence in Verifying Matrix Multiplication)

In class, we saw Freivald’s algorithm for checking matrix multiplication, which, given matrices A,B
and C, returned the following:

• If AB = C, then the algorithm always returned TRUE

• If AB 6= C, then the algorithm returned TRUE with probability at most 1/2

Part (a)

Given any ε > 0, how many times do we need to run Freivald’s algorithm to be sure that {AB = C}
with probability greater than 1− ε?

Part (b)

Suppose we started with the belief that the events {AB = C} and {AB 6= C} were equally likely
(i.e., P[AB = C] = P[AB 6= C] = 1/2). Moreover, suppose k independent runs of Freivald’s
algorithm all returned TRUE. Then what is our new (or posterior) belief that {AB = C}?
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