Problem 1: (Practice with Asymptotic Notation)

An essential requirement for understanding scaling behavior is comfort with asymptotic (or 'big-O') notation. In this problem, you will prove some basic facts about such asymptotics.

Part (a)

Given any two functions $f(\cdot)$ and $g(\cdot)$, show that $f(n) + g(n) = \Theta(\max\{f(n), g(n)\})$.

Part (b)

An algorithm ALG consists of two tunable sub-algorithms ALG_A and ALG_B , which have to be executed serially (i.e., one run of ALG involves first executing ALG_A followed by ALG_B). Moreover, given any function f(n), we can tune the two algorithms such that one run of ALG_A takes time O(f(n)) and ALG_B takes time O(n/f(n)). How should we choose f to minimize the overall runtime of ALG (i.e., to ensure the runtime of ALG is O(h(n)) for the smallest-growing function h)?

How would your answer change if ALG_A and ALG_B could be executed in parallel, and we have to wait for both to finish?

Part (c)

We are given a recursive algorithm which, given an input of size n, splits it into 2 problems of size n/2, solves each recursively, and then combines the two parts in time O(n). Thus, if T(n) denotes the runtime for the algorithm on an input of size n, then we have:

$$T(n) = 2T(n/2) + O(n)$$

Prove that $T(n) = O(n \log n)$.

Hint: Note that for a constant size input, the algorithm takes O(1) time. How many recursions does it require to reduce a problem of size n to constant size subproblems? What is the total runtime overhead at each recursive level?

Problem 2: (Some important asymptotes)

Part (a)

In class, we defined the harmonic number $H_n = \sum_{i=1}^n 1/i$. Argue that:

$$\int_{1}^{n+1} \frac{1}{x} dx \le H_n \le 1 + \int_{1}^{n} \frac{1}{x} dx$$

Thus, prove that $H_n = \Theta(\ln n)$. Hint: Bound the 1/x function from above and below by a step function.

Part (b)

Next, we try to find the asymptotic growth n!. As in the previous part, argue that:

$$\int_{1}^{n} \ln x dx \le \ln n! \le \int_{1}^{n+1} \ln x dx$$

Thus, prove that $n! = \Theta(n \ln n)$.

Part (c)

(Stirling's approximation) We now improve the estimate in the previous part to get the familiar form of Stirling's approximation. First, argue that for any integer $i \ge 1$, we have:

$$\int_{i}^{i+1} \log x dx \ge \frac{\log i + \log(i+1)}{2}$$

Using this, show that:

$$n! \le e\sqrt{n} \left(\frac{n}{e}\right)^n$$

Hint: Given any i > 1, where does the line joining the two points $(i, \ln i)$ and $(i + 1, \ln(i + 1))$ lie with respect to the function $\log x$?

Problem 3: (The Geometric Distribution)

A random variable X is said to have a Geometric(p) distribution if for any integer $k \ge 1$, we have $\mathbb{P}[X = k] = p(1-p)^{k-1}$.

Part (a)

Suppose we repeatedly toss a coin which gives HEADS with probability p. Argue that the number of tosses until we see the first HEADS is distributed as Geometric(p).

Part (b)

(Memoryless property) Using the definition of conditional probability, prove that for any integers $i, k \ge 1$, the random variable X obeys:

$$\mathbf{P}[X = k + i | X > k] = \mathbf{P}[X = i]$$

Also convince yourself that this follows immediately from the characterization of the Geometric r.v. in Part (a).

Part (c)

Show that: $(i)\mathbf{E}[X] = \frac{1}{p}$, and $(ii)Var[X] = \frac{1-p}{p^2}$

Hint: Note that by the memoryless property, a Geometric(p) random variable X is 1 with probability p, and 1+Y with probability (1-p), where Y also has a Geometric(p) distribution. Now try writing the expectation and variance recursively.

Problem 4: (Upper Bounds on Collision Probabilities)

Let $X_{m,n}$ denote the number of collisions when *m* balls are dropped u.a.r. into *n* bins. In class, we showed that then the expected number of collisions is $\binom{m}{2}/n$. We now upper bound the probability that no collision occurs.

Assume that n > m (clearly this is required for no collisions!). First, using the law of total probability, argue that:

P[No collisions when *m* balls dropped u.a.r. in *n* bins] = $\prod_{i=1}^{m-1} \left(1 - \frac{i}{n}\right)$

Next, using the inequality $e^{-x} \ge (1-x)$, simplify the above to show:

 \mathbf{P} [No collisions when *m* balls dropped u.a.r. in *n* bins] $\leq e^{-\mathbf{E}[X_{m,n}]}$

Problem 5: (Posterior Confidence in Verifying Matrix Multiplication)

In class, we saw Freivald's algorithm for checking matrix multiplication, which, given matrices A, B and C, returned the following:

- If AB = C, then the algorithm always returned TRUE
- If $AB \neq C$, then the algorithm returned TRUE with probability at most 1/2

Part (a)

Given any $\epsilon > 0$, how many times do we need to run Freivald's algorithm to be sure that $\{AB = C\}$ with probability greater than $1 - \epsilon$?

Part (b)

Suppose we started with the belief that the events $\{AB = C\}$ and $\{AB \neq C\}$ were equally likely (i.e., $\mathbf{P}[AB = C] = \mathbf{P}[AB \neq C] = 1/2$). Moreover, suppose k independent runs of Freivald's algorithm all returned TRUE. Then what is our new (or *posterior*) belief that $\{AB = C\}$?