ORIE 4520: Stochastics at Scale Homework 1: Solutions
Fall 2015 Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (Practice with Asymptotic Notation)

An essential requirement for understanding scaling behavior is comfort with asymptotic (or ‘big-O’)
notation. In this problem, you will prove some basic facts about such asymptotics.

Part (a)
Given any two functions f(-) and g¢(-), show that f(n)+ g(n) = O(max{f(n),g(n)}).

Solution: Note — Unless mentioned otherwise, we will always consider functions from the positive
integers to the non-negative real numbers.

To show f(n)+g(n) = O(max{f(n),g(n)}), we need to show f(n)+g(n) = Q(max{f(n),g(n)})
and f(n) + g(n) = O(max{f(n), g(n)}).

First, since the functions are non-negative, we have that f(n) +g(n) > f(n) and f(n)+g(n) >
g(n) — combining these, we get that f(n)+ g(n) > max{f(n),g(n)} for all n; thus f(n) + g(n) =
Q(max{f(n),g(n)}). On the other hand, we also have that f(n)+ g(n) < 2max{f(n),g(n)} for all
n; thus f(n) + g(n) = O(max{f(n),g(n)}). This completes the proof.

Part (b)

An algorithm ALG consists of two tunable sub-algorithms ALG 4 and ALGp, which have to be
executed serially (i.e., one run of ALG involves first executing ALG 4 followed by ALG ). Moreover,
given any function f(n), we can tune the two algorithms such that one run of ALG 4 takes time
O(f(n)) and ALGp takes time O(n/f(n)). How should we choose f to minimize the overall runtime
of ALG (i.e., to ensure the runtime of ALG is O(h(n)) for the smallest-growing function h)?

How would your answer change if ALG 4 and ALGp could be executed in parallel, and we have
to wait for both to finish?

Solution: Since the two algorithms are run sequentially, the total runtime is O(f(n) + n/f(n))
— from the previous part, we have that this is same as O(max{f(n),n/f(n)}). Now, in order to
minimize this, it is clear we need to set f(n) such that both parts are equal. Thus, we should
choose f(n) =+/n and thus h(n) = \/n.

In case the two ran in parallel, the runtime would now be O(max{f(n),n/f(n)}) — clearly this
would have the same optimal runtime!

Part (c)

We are given a recursive algorithm which, given an input of size n, splits it into 2 problems of size
n/2, solves each recursively, and then combines the two parts in time O(n). Thus, if T'(n) denotes
the runtime for the algorithm on an input of size n, then we have:

T(n) =2T(n/2) + O(n)

Prove that T'(n) = O(nlogn).
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Hint: Note that for a constant size input, the algorithm takes O(1) time. How many recursions
does it require to reduce a problem of size n to constant size subproblems? What is the total runtime
overhead at each recursive level?

Solution: We will solve this via an explicit counting argument, which I find instructive in under-
standing how runtimes accumulate in a recursion. Let k = {1,2,..., K} denote the levels of the
recursion tree — here k = 1 is the original problem of size n, k = 2 is the first level of recursion with
two subproblems of size n/2, and extending this, at level k, we have 2¥ subproblems, each of size
n/ 2% and at level K the subproblems are of size 1. Now observe the following:

e The subproblems are of size 1 after K < [log, n] recursive levels. Moreover, the time taken
to solve a subproblem of size 1 is O(1).

e The overhead from a subproblem of size n is O(n) — thus the total overhead at level k is
2k . 0(n/2¥) = O(n)

Putting this together, we get that T'(n) = O(nlogn).

Problem 2: (Some important asymptotes)
Part (a)

In class, we defined the harmonic number H, = > ; 1/i. Argue that:

n+1 1 n 1
/ deHngl-i-/ —dx
1 x 1 T
Thus, prove that H, = ©(lnn).

Hint: Bound the 1/x function from above and below by a step function.

Solution: The idea is to represent the harmonic number as the area of a curve (see Figure 1).

Essentially, we have that H, is the area under a set of rectangles of length 1 and height 1/i,7 €
{1,2,...,n}. Now suppose we have a step function such that f,(z) = 1/i,x € [i,i + 1) (i.e., the
rectangles above the 1/ curve). Then we have:

n+1
H, > / —dzr =1In(n+1)
1 xr

On the other hand, if we define fij(z) = 1/i,z € (i — 1,4}, and consider = € [2,n], we have that:

"1
Sl—i—/ —dx =1+ In(n)
1 T

Thus we have that In(n 4+ 1) < H, <1+ Inn and hence H,, = ©(logn).
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Figure 1: ”Integral Test” by Jim.belk. Licensed under Public Domain via Commons, https:
//commons .wikimedia.org/wiki/File:Integral_Test.svg#/media/File:Integral_Test.svg

Part (b)

Next, we try to find the asymptotic growth n!. As in the previous part, argue that:
n n+1
/ Inzdzr <Inn! < / In xdx
1 1

Thus, prove that n! = ©(nlnn).

Solution: This proceeds in a very similar fashion as above, except that now log x is an increasing
function. We first compare the function fj(z) = logi,z € [i,i+ 1) for z € [1,n + 1] to get:

n+1
log n! §/ Inzdr = zlogx — P = (n+ 1) log(n + 1) —n
1
To lower bound, we use the function f,(x) =logi,x € (i — 1,4] for z € [1,n] to get:
n n
logn! = Zlogi > / Inzdr = zxlogx — x| =nlogn—n+1
=2 1

Combining and using the fact that n = O(nlogn), we get that logn! = O(nlogn).

Part (c)

(Stirling’s approximation) We now improve the estimate in the previous part to get the familiar
form of Stirling’s approximation. First, argue that for any integer ¢ > 1, we have:

it1 logi + loo(i + 1
/ log d > ogi+ zg(z—l- )
i
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Using this, show that:

ween(?)

Hint: Given any i > 1, where does the line joining the two points (i,Ini) and (i + 1,In(i 4+ 1)) lie
with respect to the function logx?

Solution: We again want to use the integral bounding trick — here however, we use the added
property that logx is a concave function, and hence for any positive integer ¢, the line segment
joining (i,log¢) and (i + 1,log(i + 1)) lies below the curve logz for x € [i,7 + 1]. Moreover, the
area of the trapezoid bounded by the line segment joining (i,logi) and (i + 1,log(i + 1)), and
the lines = 0, y = ¢ and y = ¢ + 1 is given by % (recall — the area of a trapezoid is
1/2 - (height) - (sum of lengths of parallel sides)). Thus we have that:

it1 logi + loo(i 4+ 1
/ log 2 > ogi+ gg(z—l- )
i

Now summing up over i € {1,2,...,n — 1}, we have:

n i+1 1
Z/ log xdx > logn! — ogn
i=1""

However the left hand side is just fln log zdxr = nlogn —n + 1. Thus we get:

logn
2

logn! <nlogn—-—n+1+

Exponentiating both sides, we get:

w2

Problem 3: (The Geometric Distribution)

A random variable X is said to have a Geometric(p) distribution if for any integer k > 1, we have
PIX = k] =p(1 —p)* .

Part (a)

Suppose we repeatedly toss a coin which gives HEADS with probability p. Argue that the number
of tosses until we see the first HEADS is distributed as Geometric(p).

Solution: Our sample space ) consists of all sequences over the alphabet {H, T} that end with
H (HEADS) and contain no other H’s, i.e. Q = {H,TH,TTH,...}. The number of failures k — 1
before the first success (HEADS) with a probability of success p is given by: P[X = k] = p(1 —p)*¥~!
with k being the total number of tosses including the first HEADS that terminates the experiment.
Therefore, the number of tosses until we see the first HEADS is distributed as Geometric(p).
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Part (b)

(Memoryless property) Using the definition of conditional probability, prove that for any integers
i,k > 1, the random variable X obeys:

P[X =k+i|X > k] = P[X =

Also convince yourself that this follows immediately from the characterization of the Geometric
r.v. in Part (a).

Solution: By the definition of conditional probability,

= 7 — g _ n)kt+i—1 )
PIX = hti|X > k] = DX Pk[; >ﬁk]X >k _ PE([X jZ] I p(1(1 f)p)k — p(1—p) ' = P[X =],

Note that here we used that P[X > k] = (1 — p)¥. The event ”X > k” means that at least k + 1
tosses are required. This is exactly equivalent to saying that the first k tosses are all TAILS and
the probability of this event is precisely (1 — p)~.

Part (c)
Show that: (i)E[X] = 1, and (ii)Var[X] = 11?;21’

=
Hint: Note that by the memoryless property, a Geometric(p) random variable X is 1 with probability
p, and 1+Y with probability (1—p), where Y also has a Geometric(p) distribution. Now try writing

the expectation and variance recursively.

Solution: Note that by the memoryless property, a Geometric(p) random variable X is 1 with
probability p, and 1+ Y with probability (1 — p), where Y also has a Geometric(p) distribution.
Therefore,

EX]=Ep-1+(1-p)-(1+Y)] =p+(1-pE[l+Y]=1+(1-pE[Y]
=1+ (1-p)E[X].

Solving for E[X], we get E[X]| = %.
Next, recall that Var[X] = E[X?] - (E[X])? = E[X?] - 1%. So, first we need to calculate E[X?].

EX*=E]p-1+(1-p)-(1+Y)?
=p+(1-p(1+2-EY]+E[Y?)=p+ (1 -p)(1+2-E[X]+E[X?)

—p—i—(l—P)(l—l—Q-;—i—E[XQ]).

Simplifying, we get E[X?] = 217;27’, and hence Var(X) = E[X?] - L = 1p;gp
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Problem 4: (Upper Bounds on Collision Probabilities)

Let X, ,, denote the number of collisions when m balls are dropped u.a.r. into n bins. In class, we
showed that then the expected number of collisions is (7;) /n. We now upper bound the probability
that no collision occurs.

Assume that n > m (clearly this is required for no collisions!). First, using the law of total
probability, argue that:

m—1 .
P[No collisions when m balls dropped u.a.r. in n bins] = H (1 — Z)
n
i=1

Next, using the inequality e~* > (1 — x), simplify the above to show:
P[No collisions when m balls dropped w.a.r. in n bins] < e ElXmnl
Solution: Let D; be the event that there is no collision after having thrown in the ¢-th ball. If

there is no collision after throwing in ¢ balls then they must all be occupying different slots, so the
probability of no collision upon throwing in the (i + 1)-st ball is exactly (n —i)/n. That is,

n—1

P[D;1|D;] = -

Also note that P[D;] = 1. The probability of no collision at the end of the game can now be
computed via

m—1 m—1 .
P[Dm} = P[Dm|Dm—1] : P[Dm—l] == H P[Di+1‘Di] = H <1 — Z) .

X X n
i=1 i=1

Note that i/n < 1. So we can use the inequality 1z < e® for each term of the above expression.
This means that:

Problem 5: (Posterior Confidence in Verifying Matrix Multiplication)

In class, we saw Freivald’s algorithm for checking matrix multiplication, which, given matrices A, B
and C, returned the following:

o If AB = (), then the algorithm always returned TRUE
e If AB # C, then the algorithm returned TRUE with probability at most 1/2

Part (a)

Given any € > 0, how many times do we need to run Freivald’s algorithm to be sure that {AB = C'}
with probability greater than 1 — €?
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Part (b)

Suppose we started with the belief that the events {AB = C} and {AB # C'} were equally likely
(i.e., P[AB = C| = P[AB # C] = 1/2). Moreover, suppose k independent runs of Freivald’s
algorithm all returned TRUE. Then what is our new (or posterior) belief that {AB = C'}?

Solution:

Part (a)

We know that P[AB =C] > 1— 2%, therefore, we want 1 — 2% > 1—e. Which means, k > —log, €,
and hence n = [—log, €].

Part (b)

Let I be our information that k independent runs of Freivald’s algorithm all returned TRUE. Now
we simply need to use Bayes’ Theorem to find the posterior:

1
14 2-F

B B P[I|AB = C|P[AB = C] _ 1
PUAB = ClUl = prdp —cp[AB = O]+ PIIAB £ CIPAB £C] ~ 1. 3tk 3

1_
=
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