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Problem 1: (Weighted MINCUT and MAXCUT)

Let G(V,E) be an undirected weighted graph, with wij > 0 the weight associated with every edge
(i, j) ∈ E. The weight of a cut (C,C) is now the sum of the weights of edges across the cut, i.e.,
δ(C,C) =

∑
i,j∈E(C,C)wij . We now try and extend our MAXCUT and MINCUT algorithms to this

setting.

Part (a)

Let W =
∑

(i,j)∈E eij be the total weight of all edges in then graph. Modify the MAXCUT algorithm

presented in class to return a cut (C,C) with expected weight satisfying: E[δ(C,C)] ≥ W
2

Part (b)

Next suppose we modify the CONTRACT algorithm to pick edges proportional to their weights.
Show that any minimum weight cut (C,C) is returned by CONTRACT with probability ≥ 2

n(n−1) .

Problem 2: (Recursive Randomized Selection)

Given a unsorted array S = {x1, x2, . . . , xn}, with corresponding sorted array {y1, y2, . . . , yn},
a selection algorithm is one that finds the median element yn

2
(or more generally, the kth-largest

element yk for any k ∈ {1, 2, . . . , n}. One way to do so is by first sorting the array, and then returning
yk for any k – this takes time O(n log n). However, consider the following simple randomized
algorithm to find yk for a given k:
QUICKSELECT(S, k)
• Given array S of n elements, we want to output the kth largest element yk.
• Choose a random pivot σ, and partition S into two parts:

S` = {yi ∈ S|yi < σ} , Sh = {yi ∈ S|yi > σ}

• If |S`| = k − 1, return σ
• If |S`| > k, then run QUICKSELECT(S`, k); else run QUICKSELECT(Sh, k − |S`| − 1)

It is easy to see that this will find yk – we now want to show that QUICKSELECT has a running
time of O(n).

Part (a)

To build some intuition as to why this works, assume in given an array S of size n, the two arrays
S`, Sh were guaranteed to be of size at most αn, for some α ∈ [1/2, 1). Argue that the runtime of
QUICKSELECT would then obey: T (n) = T (αn) +O(n). Solve this to show T (n) = O(n).

Part (b)

Given any array of size at most n, argue that after splitting about the pivot, the sets S` and Sh
both have size less than 3n/4 with probability at least 1/2. Using this, find an upper bound on
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the expected number of times an array of size n needs to be split about random pivots before the
sub-array containing yk is of size ≤ 3n/4.
Hint: Consider an alternate algorithm, where you pick a pivot, check to make sure that both S`
and Sh are less than 3|S|/4, and then split – if not, you keep the array S as before and again
pick a random pivot. Prove the above result for this modified algorithm. Convince yourself that
QUICKSELECT can only be faster.

Part (c)

Let’s define the algorithm to run in phases, where in phase i, the size of the sub-array containing
yk is between (3/4)j−1n and (3/4)jn. Also let Xj denote the number of splits required in phase j
(so for example,X1 is the expected number of splits required to go from the original array S to one
of size 3n/4).

Argue that T (n) ≤
∑

phase j c(3/4)j−1n.Xj for some constant c. Finally, via linearity of

expectation, prove that E[T (n)] = O(n).

Problem 3: (Multi-stage MINCUT Algorithm)

In class we saw the CONTRACT Algorithm for finding the MINCUT of a multigraph G – we were
given that each run of CONTRACT took time O(n2), and argued that if G had a unique minimum
cut (C,C), then CONTRACT finds it with probability Ω(1/n2).

Part (a)

Suppose CONTRACT returned (C,C) with probability at least 1/n2 – show that n2 ln 2 indepen-
dent runs of CONTRACT are sufficient to find cut (C,C) with probability at least 1/2.

More generally, convince yourself that if an algorithm is successful with probability at least p,
then ln 2/p independent runs are sufficient to guarantee success with probability at least 1/2.
Hint: Use (1− x) ≤ e−x.

Part (b)

The above problem shows that the overall runtime of CONTRACT is O(n4) – on the other hand,
we learnt in class that the best deterministic MINCUT algorithm had a runtime of O(n3). We also
saw that if we ran CONTRACT until the number of vertices in the multigraph is t, then it takes
time O(n2) (as long as t = o(n)) and preserves the minimum cut (C,C) with probability O(t2/n2).

Now consider running CONTRACT until the number of vertices in the multigraph is t, followed
by a deterministic MINCUT algorithm for the t-node graph – as before, we can do this multiple
times to improve the probability. Show that the best possible choice of t results in a running time
of O(n8/3) for finding (C,C) with probability at least 1/2.
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Problem 4: (The FASTCUT Algorithm and the Branching Process)

Recall that in class, we briefly saw the FASTCUT algorithm, where given a graph, we first ran two
independent executions of CONTRACT, stopping them when the resulting subgraph retained the
minimum cut with probability ≥ 1/2, and then proceeded recursively. We now try and understand
why this algorithm works.

Part (a)

Assume we can choose α such that contracting the graph to t = αn nodes ensures that a minimum
cut is preserved with probability exactly 1/2 – let us call this the α-CONTRACT step. Also assume
the original graph G had a unique minimum cut (C,C).

Now suppose in the first recursive step, we do 2 independent runs of α-CONTRACT on the
original graph G, and at each recursive step, we do 2 independent runs of α-CONTRACT for each
input sub-graph. After k recursions (where k ∈ {1, 2, . . . , log1/α n}, what is the expected number

of sub-graphs which retain the minimum cut (C,C)?

Part (b)

Suppose instead of doing 2 independent runs of α-CONTRACT on each subgraph, we instead ran it
once, and just duplicated the resulting subgraph. Now what is the expected number of sub-graphs
which retain the minimum cut (C,C) after k recursions? Why do you think this is different from
part (a)?

Part (c)

Let p(k) be the probability that the minimum cut (C,C) survives in at least one subgraph if we
stop after doing k recursions (thus p(0) = 1).

Argue that in the procedure in part (b) – where we do one run of α-CONTRACT for each

subgraph and duplicate the output – the function p(k) obeys p(k+1) = p(k)
2 , and thus p(k) = 1/2k.

On the other hand, argue that the procedure in part (a) – where we do two independent runs

of α-CONTRACT for each subgraph – the function p(k) obeys p(k + 1) = 1−
(

1− p(k)
2

)2
.

Part (d)

(OPTIONAL) Try to show that the solution to the recursive equation p(k+ 1) = 1−
(

1− p(k)
2

)2
obeys p(k) = Θ(1/k).
Hint: Note that p(k) = Θ(1/k) is same as saying c1/k ≤ p(k) ≤ c2/k – now substitute this in the
above recursive equation, and prove it holds by induction.
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