Problem 1: (Weighted MINCUT and MAXCUT)

Let G(V, E) be an undirected weighted graph, with $w_{ij} > 0$ the weight associated with every edge $(i, j) \in E$. The weight of a cut (C, \overline{C}) is now the sum of the weights of edges across the cut, i.e., $\delta(C, \overline{C}) = \sum_{i,j \in E(C,\overline{C})} w_{ij}$. We now try and extend our MAXCUT and MINCUT algorithms to this setting.

Part (a)

Let $W = \sum_{(i,j)\in E} e_{ij}$ be the total weight of all edges in then graph. Modify the MAXCUT algorithm presented in class to return a cut (C, \overline{C}) with expected weight satisfying: $\mathbf{E}[\delta(C, \overline{C})] \geq \frac{W}{2}$

Part (b)

Next suppose we modify the CONTRACT algorithm to pick edges proportional to their weights. Show that any minimum weight cut (C, \overline{C}) is returned by CONTRACT with probability $\geq \frac{2}{n(n-1)}$.

Problem 2: (Recursive Randomized Selection)

Given a unsorted array $S = \{x_1, x_2, \ldots, x_n\}$, with corresponding sorted array $\{y_1, y_2, \ldots, y_n\}$, a selection algorithm is one that finds the median element $y_{\frac{n}{2}}$ (or more generally, the k^{th} -largest element y_k for any $k \in \{1, 2, \ldots, n\}$. One way to do so is by first sorting the array, and then returning y_k for any k – this takes time $O(n \log n)$. However, consider the following simple randomized algorithm to find y_k for a given k:

QUICKSELECT(S, k)

- Given array S of n elements, we want to output the k^{th} largest element y_k .
- Choose a random pivot σ , and partition S into two parts:

$$S_{\ell} = \{ y_i \in S | y_i < \sigma \} \quad , \quad S_h = \{ y_i \in S | y_i > \sigma \}$$

• If $|S_{\ell}| = k - 1$, return σ

• If $|S_{\ell}| > k$, then run QUICKSELECT (S_{ℓ}, k) ; else run QUICKSELECT $(S_h, k - |S_{\ell}| - 1)$

It is easy to see that this will find y_k – we now want to show that QUICKSELECT has a running time of O(n).

Part (a)

To build some intuition as to why this works, assume in given an array S of size n, the two arrays S_{ℓ}, S_h were guaranteed to be of size at most αn , for some $\alpha \in [1/2, 1)$. Argue that the runtime of QUICKSELECT would then obey: $T(n) = T(\alpha n) + O(n)$. Solve this to show T(n) = O(n).

Part (b)

Given any array of size at most n, argue that after splitting about the pivot, the sets S_{ℓ} and S_h both have size less than 3n/4 with probability at least 1/2. Using this, find an upper bound on

the expected number of times an array of size n needs to be split about random pivots before the sub-array containing y_k is of size $\leq 3n/4$.

Hint: Consider an alternate algorithm, where you pick a pivot, check to make sure that both S_{ℓ} and S_h are less than 3|S|/4, and then split – if not, you keep the array S as before and again pick a random pivot. Prove the above result for this modified algorithm. Convince yourself that QUICKSELECT can only be faster.

Part (c)

Let's define the algorithm to run in *phases*, where in phase *i*, the size of the sub-array containing y_k is between $(3/4)^{j-1}n$ and $(3/4)^j n$. Also let X_j denote the number of splits required in phase *j* (so for example, X_1 is the expected number of splits required to go from the original array *S* to one of size 3n/4).

Argue that $T(n) \leq \sum_{\text{phase } j} c(3/4)^{j-1} n X_j$ for some constant c. Finally, via linearity of expectation, prove that $\mathbf{E}[T(n)] = O(n)$.

Problem 3: (Multi-stage MINCUT Algorithm)

In class we saw the CONTRACT Algorithm for finding the MINCUT of a multigraph G – we were given that each run of CONTRACT took time $O(n^2)$, and argued that if G had a unique minimum cut (C, \overline{C}) , then CONTRACT finds it with probability $\Omega(1/n^2)$.

Part (a)

Suppose CONTRACT returned (C, \overline{C}) with probability at least $1/n^2$ – show that $n^2 \ln 2$ independent runs of CONTRACT are sufficient to find cut (C, \overline{C}) with probability at least 1/2.

More generally, convince yourself that if an algorithm is successful with probability at least p, then $\ln 2/p$ independent runs are sufficient to guarantee success with probability at least 1/2. Hint: Use $(1-x) \leq e^{-x}$.

Part (b)

The above problem shows that the overall runtime of CONTRACT is $O(n^4)$ – on the other hand, we learnt in class that the best deterministic MINCUT algorithm had a runtime of $O(n^3)$. We also saw that if we ran CONTRACT until the number of vertices in the multigraph is t, then it takes time $O(n^2)$ (as long as t = o(n)) and preserves the minimum cut (C, \overline{C}) with probability $O(t^2/n^2)$.

Now consider running CONTRACT until the number of vertices in the multigraph is t, followed by a deterministic MINCUT algorithm for the t-node graph – as before, we can do this multiple times to improve the probability. Show that the best possible choice of t results in a running time of $O(n^{8/3})$ for finding (C, \overline{C}) with probability at least 1/2.

Problem 4: (The FASTCUT Algorithm and the Branching Process)

Recall that in class, we briefly saw the FASTCUT algorithm, where given a graph, we first ran two independent executions of CONTRACT, stopping them when the resulting subgraph retained the minimum cut with probability $\geq 1/2$, and then proceeded recursively. We now try and understand why this algorithm works.

Part (a)

Assume we can choose α such that contracting the graph to $t = \alpha n$ nodes ensures that a minimum cut is preserved with probability *exactly* 1/2 – let us call this the α -CONTRACT step. Also assume the original graph G had a unique minimum cut (C, \overline{C}) .

Now suppose in the first recursive step, we do 2 independent runs of α -CONTRACT on the original graph G, and at each recursive step, we do 2 independent runs of α -CONTRACT for each input sub-graph. After k recursions (where $k \in \{1, 2, ..., \log_{1/\alpha} n\}$, what is the expected number of sub-graphs which retain the minimum cut (C, \overline{C}) ?

Part (b)

Suppose instead of doing 2 independent runs of α -CONTRACT on each subgraph, we instead ran it once, and just duplicated the resulting subgraph. Now what is the expected number of sub-graphs which retain the minimum cut (C, \overline{C}) after k recursions? Why do you think this is different from part (a)?

Part (c)

Let p(k) be the probability that the minimum cut (C, \overline{C}) survives in at least one subgraph if we stop after doing k recursions (thus p(0) = 1).

Argue that in the procedure in part (b) – where we do one run of α -CONTRACT for each subgraph and duplicate the output – the function p(k) obeys $p(k+1) = \frac{p(k)}{2}$, and thus $p(k) = 1/2^k$. On the other hand, argue that the procedure in part (a) – where we do two independent runs

On the other hand, argue that the procedure in part (a) – where we do two independent runs of α -CONTRACT for each subgraph – the function p(k) obeys $p(k+1) = 1 - \left(1 - \frac{p(k)}{2}\right)^2$.

Part (d)

(**OPTIONAL**) Try to show that the solution to the recursive equation $p(k+1) = 1 - \left(1 - \frac{p(k)}{2}\right)^2$ obeys $p(k) = \Theta(1/k)$.

Hint: Note that $p(k) = \Theta(1/k)$ is same as saying $c_1/k \le p(k) \le c_2/k$ – now substitute this in the above recursive equation, and prove it holds by induction.