
ORIE 4520: Stochastics at Scale
Fall 2015

Homework 2: Due Sep 18th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (Weighted MINCUT and MAXCUT)

Let G(V,E) be an undirected weighted graph, with wij > 0 the weight associated with every edge
(i, j) ∈ E. The weight of a cut (C,C) is now the sum of the weights of edges across the cut, i.e.,
δ(C,C) =

∑
i,j∈E(C,C)wij . We now try and extend our MAXCUT and MINCUT algorithms to this

setting.

Part (a)

Let W =
∑

(i,j)∈E eij be the total weight of all edges in then graph. Modify the MAXCUT algorithm

presented in class to return a cut (C,C) with expected weight satisfying: E[δ(C,C)] ≥ W
2

Solution: For every edge (i, j) ∈ E, let Xij denote the indicator r.v. that is 1 if (i, j) ∈ E(C,C).
Then, we have δ(C,C) =

∑
(i,j)∈E wij · Xij , and thus by linearity of expectation, E[δ(C,C)] =∑

(i,j)∈E wij · E[Xij]. Now to compute E[Xij] = P[Xij = 1], we use the principle of deferred

decisions. For any edge (i, j), suppose we first assign node i to either C or C – then in order for
(i, j) to be in the cut, we must assign node j to the other set, which happens with probability 1/2.
Thus, we get that E[δ(C,C)] =

∑
(i,j)∈E wij · 1/2 = W/2.

Part (b)

Next suppose we modify the CONTRACT algorithm to pick edges proportional to their weights.
Show that any minimum weight cut (C,C) is returned by CONTRACT with probability ≥ 2

n(n−1) .

Solution: Suppose we are given any multigraph G with n nodes and with a minimum cut (C,C)
with weight wk. Then for any vertex of the G, we have that d(v) ≥ wk (else it is smaller than the
minimum cut, which is a contradiction). This implies that the total weight satisfies W ≥ nwk/2.
Using this, we have that:

P[Randomly picked edge lies in E(C,C)] ≤ wk
nwk/2

=
2

n
.

Returning to the CONTRACT algorithm, in order for the minimum cut (C,C) to be preserved, we
require that no edge in E(C,C) is picked in the n− 2 random edge selections. Thus, we have:

P[CONTRACT(G, 2) preserves (C,C)] ≥ Πn−3
i=0

(
1− 2

n− i

)
=

(
n− 2

n

)(
n− 3

n− 1

)(
n− 4

n− 2

)
. . .

(
2− 1

2 + 1

)
=

2

n(n− 1)

1

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 2: Due Sep 18th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Problem 2: (Recursive Randomized Selection)

Given a unsorted array S = {x1, x2, . . . , xn}, with corresponding sorted array {y1, y2, . . . , yn},
a selection algorithm is one that finds the median element yn

2
(or more generally, the kth-largest

element yk for any k ∈ {1, 2, . . . , n}. One way to do so is by first sorting the array, and then returning
yk for any k – this takes time O(n log n). However, consider the following simple randomized
algorithm to find yk for a given k:
QUICKSELECT(S, k)
• Given array S of n elements, we want to output the kth largest element yk.
• Choose a random pivot σ, and partition S into two parts:

S` = {yi ∈ S|yi < σ} , Sh = {yi ∈ S|yi > σ}

• If |S`| = k − 1, return σ
• If |S`| > k, then run QUICKSELECT(S`, k); else run QUICKSELECT(Sh, k − |S`| − 1)

It is easy to see that this will find yk – we now want to show that QUICKSELECT has a running
time of O(n).

Part (a)

To build some intuition as to why this works, assume in given an array S of size n, the two arrays
S`, Sh were guaranteed to be of size at most αn, for some α ∈ [1/2, 1). Argue that the runtime of
QUICKSELECT would then obey: T (n) = T (αn) +O(n). Solve this to show T (n) = O(n).

Solution: Our algorithm splits the array into two parts which have size at most n−1. Therefore,
dn2 e ≤ max(Sl, Sh) < n. Hence, the maximum execution time, α, will be in [1/2, 1). Since,
partitioning S into Sl and Sh requires O(n) time, we have T (n) = T (αn) + O(n), which yields to
geometric series:

T (n) = T (αn) +O(n) = O(n) +O(αn) +O(α2n) +O(α3n) + · · · = O(
1

1− α
n) = O(n).

Part (b)

Given any array of size at most n, argue that after splitting about the pivot, the sets S` and Sh
both have size less than 3n/4 with probability at least 1/2. Using this, find an upper bound on
the expected number of times an array of size n needs to be split about random pivots before the
sub-array containing yk is of size ≤ 3n/4.
Hint: Consider an alternate algorithm, where you pick a pivot, check to make sure that both S`
and Sh are less than 3|S|/4, and then split – if not, you keep the array S as before and again
pick a random pivot. Prove the above result for this modified algorithm. Convince yourself that
QUICKSELECT can only be faster.

2

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 2: Due Sep 18th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Solution: Note that, for any k, P(|Sl| = k) ≥ 1
n . Therefore,

p = P(|Sl|, |Sk| ≤
3n

4
) = P(

n

4
≤ |Sl| ≤

3n

4
) ≥

3n
4 −

n
4

1
n

=
1

2
.

Let N be the number of partitions an array of size n needs to be split about random pivots before
the sub-array containing yk is of size ≤ 3n/4. Since N ∼ Geom(p), we have E[N] = 1

p ≥ 2.

Part (c)

Let’s define the algorithm to run in phases, where in phase i, the size of the sub-array containing
yk is between (3/4)j−1n and (3/4)jn. Also let Xj denote the number of splits required in phase j
(so for example,X1 is the expected number of splits required to go from the original array S to one
of size 3n/4).
Argue that T (n) ≤

∑
phase j c(3/4)j−1n.Xj for some constant c. Finally, via linearity of expecta-

tion, prove that E[T (n)] = O(n).

Solution: First, note that QUICKSELECT uses ≤ cn operations outside of the recursive call
for some constant c > 0. By the definition of the phase, (3/4)j−1n is an upper bound on the
array size during phase j. Also, c(3/4)j−1n is the amount of work that we do on each phase j
sub-problem, therefore c(3/4)j−1n · Xj is the amount of work in phase j overall. Hence, T (n) ≤∑

phase j c(3/4)j−1nXj .

Using the fact that E[Xj] = 2,and the linearity of expectation, we get:

E[T (n)] ≤ E[
∑

phase j

c(3/4)j−1nXj] = cn
∑

phase j

(3/4)j−1E[Xj] = 2cn
∑

phase j

(3/4)j−1 ≤ 2cn
1

1− 3/4
= 8cn.

So, E[T (n)] = O(n).

Problem 3: (Multi-stage MINCUT Algorithm)

In class we saw the CONTRACT Algorithm for finding the MINCUT of a multigraph G – we were
given that each run of CONTRACT took time O(n2), and argued that if G had a unique minimum
cut (C,C), then CONTRACT finds it with probability Ω(1/n2).

Part (a)

Suppose CONTRACT returned (C,C) with probability at least 1/n2 – show that n2 ln 2 indepen-
dent runs of CONTRACT are sufficient to find cut (C,C) with probability at least 1/2.

More generally, convince yourself that if an algorithm is successful with probability at least p,
then ln 2/p independent runs are sufficient to guarantee success with probability at least 1/2.
Hint: Use (1− x) ≤ e−x.

3

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 2: Due Sep 18th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Solution: The probability of not finding cut (C,C) after k runs is (1− 1
n2)k. Using the hint, we

get: (
1− 1

n2

)k
≤
(
e−

1
n2

)k
= e−

k
n2 ≤ 1

2
⇒ k ≥ n2ln2.

Similarly, in a more general case,

(1− p)k ≤ e−kp ⇒ k ≥ ln2/p.

Part (b)

The above problem shows that the overall runtime of CONTRACT is O(n4) – on the other hand,
we learnt in class that the best deterministic MINCUT algorithm had a runtime of O(n3). We also
saw that if we ran CONTRACT until the number of vertices in the multigraph is t, then it takes
time O(n2) (as long as t = o(n)) and preserves the minimum cut (C,C) with probability Θ(t2/n2).

Now consider running CONTRACT until the number of vertices in the multigraph is t, followed
by a deterministic MINCUT algorithm for the t-node graph – as before, we can do this multiple
times to improve the probability. Show that the best possible choice of t results in a running time
of O(n8/3) for finding (C,C) with probability at least 1/2.

Solution: Suppose we run CONTRACT until the number of vertices in the multigraph is t (for
some t = o(n) we choose later), and then use a deterministic min-cut algorithm. The total time for
this is O(n2 + t3) = O(max {n2, t3}). Moreover, the probability that this returns the true min-cut
is Θ(t2/n2) – thus in order to ensure the min-cut is found with probability 1/2, we need to repeat
O(n2/t2) times. Thus the total running time is O((n2/t2) max {n2, t3}) = O(max {n4/t2, n2t}). To
minimize this, we set t = Θ(n2/3), which gives us a total running time of O(n8/3).

Problem 4: (The FASTCUT Algorithm and the Branching Process)

Recall that in class, we briefly saw the FASTCUT algorithm, where given a graph, we first ran two
independent executions of CONTRACT, stopping them when the resulting subgraph retained the
minimum cut with probability ≥ 1/2, and then proceeded recursively. We now try and understand
why this algorithm works.

Part (a)

Assume we can choose α such that contracting the graph to t = αn nodes ensures that a minimum
cut is preserved with probability exactly 1/2 – let us call this the α-CONTRACT step. Also assume
the original graph G had a unique minimum cut (C,C).

Now suppose in the first recursive step, we do 2 independent runs of α-CONTRACT on the
original graph G, and at each recursive step, we do 2 independent runs of α-CONTRACT for each
input sub-graph. After k recursions (where k ∈ {1, 2, . . . , log1/α n}, what is the expected number

of sub-graphs which retain the minimum cut (C,C)?

4

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 2: Due Sep 18th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Solution: Suppose we number all the subgraphs at the kth recursive step as {1, 2, . . . , 2k}. Let
Xi be an indicator r.v. for whether the ith subgraph retains the minimum cut. Then clearly
E[Xi] = 1/2k (since it has to survive k successive independent runs of α-CONTRACT, one at each
recursive step). By linearity of expectation, we see that:

E[Sub-graphs retaining (C,C) after k recursions] = 1

Part (b)

Suppose instead of doing 2 independent runs of α-CONTRACT on each subgraph, we instead ran
it once, and just duplicated the resulting subgraph. run it k times, and then make 2k copies of the
resulting subgraph. Now what is the expected number of sub-graphs which retain the minimum
cut (C,C)? Why is this way of doing it different from part (a)?

Solution: Suppose again we number all the subgraphs at the kth recursive step as {1, 2, . . . , 2k},
and define Xi to be the indicator r.v. for whether the ith subgraph retains the minimum cut. Then
again E[Xi] = 1/2k, and by linearity of expectation, we have E[Sub-graphs retaining (C,C)] = 1.

The point of this question is to show that although getting the correct expectation for a random
variable (typically for the problems we study, runtime/probability of success) is necessary for good
algorithm design, it is far from sufficient. Although the procedure in parts (a) and (b) gave the
same number of expected sub-graphs preserving the min-cut, the procedure in part (b) has a much
higher variance in the number compared to part (a). What we often require is a more detailed
understanding of the r.v. in question – this is what we do in the next part, and more generally,
using tail inequalities.

Part (c)

Let p(k) be the probability that the minimum cut (C,C) survives in at least one subgraph if we
stop after doing k recursions (thus p(0) = 1).

Argue that in the procedure in part (b) – where we do one run of α-CONTRACT for each
subgraph and duplicate the output where we do 2k runs of α-CONTRACT and then make 2k

copies of the resulting sub-graph – the function p(k) obeys p(k + 1) = p(k)
2 , and thus p(k) = 1/2k.

On the other hand, argue that the procedure in part (a) – where we do two independent runs

of α-CONTRACT for each subgraph – the function p(k) obeys p(k + 1) = 1−
(

1− p(k)
2

)2
.

Solution: The first recursion is easy to see – it corresponds exactly to doing k successive indepen-
dent runs of α-CONTRACT. For the second recursion (for the procedure in part (a)), observe that
the probability of starting with a graph and not preserving the minimum cut after k+ 1 recursions
is the same as not preserving it along both of the independent sub-graphs created at the first step
of the recursion. However, for either of these subgraphs, the min-cut is preserved with probability
1
2 · p(k). Thus we get p(k + 1) = 1−

(
1− p(k)

2

)2
.

5

mailto:sbanerjee@cornell.edu

ORIE 4520: Stochastics at Scale
Fall 2015

Homework 2: Due Sep 18th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Note: The problem in the homework had another way of duplicating subgraphs in part (b), wherein
we duplicated each subgraphs once at each stage. That procedure also ends up having the same
expected number of subgraphs at each stage, but does not obey the recursion for the probability
of survival given in part (c). In particular, it satisfies the recursion p(k + 1) = 1

2 −
1
2 (1− p(k))2,

which also satisfies p(k) = Θ(1/k) – one way to see this is that this procedure is identical to running
α-CONTRACT once on the original graph, and then switching to the procedure in part (a).

Part (d)

(OPTIONAL) Try to show that the solution to the recursive equation p(k+ 1) = 1−
(

1− p(k)
2

)2
obeys p(k) = Θ(1/k).
Hint: Note that p(k) = Θ(1/k) is same as saying c1/k ≤ p(k) ≤ c2/k – now substitute this in the
above recursive equation, and prove it holds by induction.

Solution: See lecture notes.

6

mailto:sbanerjee@cornell.edu

