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Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (Practice with Chebyshev and Chernoff bounds)

When using concentration bounds to analyze randomized algorithms, one often has to approach
the problem in different ways depending on the specific bound being used. Typically, Chebyshev
is useful when dealing with more complicated random variables, and in particular, when they are
pairwise independent; Chernoff bounds are usually used along with the union bound for events
which are easier to analyze. We’ll now go back and look at a few of our older examples using both
these techniques.

Part (a)

(Number of collisions) Recall we showed that if we throw m balls in n bins, the average number of
collisions Xm,n to be µm,n =

(
m
2

)
1
n . Use Chebyshev’s inequality to show that:

P[|Xm,n − µm,n| ≥ c
√
µm,n] ≤ 1/c2.

Next suppose we choose m = 2
√
n, then µm,n ≤ 1. Use Chernoff bounds plus the union bound

to bound the probability that no bin has more than 1 ball. Compare this to the more exact analysis
you did in homework 1.

Solution: Let σm,n be the standard deviation of Xm,n. As we did before, for every pair of balls
(i, j), let Yi,j be the indicator that the two balls collide. Note that since Yi,j are {0, 1} valued r.vs,
we have E[Y 2

i,j ] = E[Yi,j ], and thus V ar(Yi,j) ≥ E[Yi,j ]. Moreover, observe that Yi,j are pairwise
independent, i.e., for any (i, j) 6= (i′, j′), the r.v.s Yi,j and Yi′,j′ are independent (in particular, note
that Yi,j , Yi,k and Yj,k are pairwise independent – however they are not mutually independent).
Now we have Xm,n =

∑
i,j Yi,j , and thus µm,n =

∑
i,j E[Yi,j ] and V ar(Xm,n) =

∑
i,j V ar(Yi,j) ≤∑

i,j E[Yi,j ] = µm,n. Thus, by Chebyshev’s inequality, we have:

P
[
|Xm,n − µm,n| ≥ c

√
µm,n

]
≤ 1/c2.

To use Chernoff bounds, we instead consider the number of balls in each bin. Let Zb,i be the
indicator that ball i fell in bin b – these are now mutually independent. Further, let Bb =

∑
i Zb,i

be the number of balls in bin b – then we know that E[Bb] = m/n, and moreover using our standard
Chernoff bound, we have:

P [Bb ≥ 2] = P [Bb ≥ (1 + (2n/m− 1))E[Bb]]

≤ exp

(
−(2n/m− 1)2(m/n)

2 + (2n/m− 1)

) (
Using P[X ≥ (1 + ε)µ] ≤ exp

(
−ε2µ
2 + ε

))
= exp

(
− (2n−m)2

n(m+ 2n)

)
Finally, by the union bound, we have P[Some bin has ≥ 2 balls] ≤ n exp

(
− (2n−m)2

n(m+2n)

)
. Now if

m = 2
√
n, we get exp

(
− (2n−m)2

n(m+2n)

)
= Θ(1), and thus the bound on P[Some bin has ≥ 2 balls] is not
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useful (as it grows with n). On the other hand, in the first homework, we did a direct calculation to
show that P[No collisions] ≤ exp (−E[Xm,n]), and thus if m = 2

√
n, we have P[No collisions] ≤ 1/2.

Thus, the Chernoff bound does not give us the tightest scaling in this case.

Part (b)

(Coupon collector) For n bins, recall that we defined Ti to be the first time when i unique bins
were filled, and used these random variables to show that Tn, i.e., the number of balls we need to
throw before every bin has at least one ball, satisfies E[Tn] = nHn = Θ(n log n). Using the same

random variables, show that P[|Tn − E[Tn]| ≥ cE[Tn]] ≤ π2

6c2H2
n

.

Next, suppose we throw in m = n log n+cn balls – using Chernoff bounds plus the union bound,
choose c such that no bin is empty with probability greater than 1− δ.
Hint: Use

∑∞
i=1 1/i2 = π2/6

Solution: First, using the independence of Tis let’s calculate V ar[Tn]:

V ar[Tn] =
n−1∑
i=0

V ar[Ti] =
n−1∑
i=0

1− pi
pi2

=
n−1∑
i=0

ni

(n− i)2
=

n∑
i=1

n(n− i)
i2

≤ n2
n∑
i=1

1

i2
≤ π2n2

6
.

Now, using Chebyshev’s inequality, we get:

P[|Tn − E[Tn]| ≥ cE[Tn]] = P[|Tn − E[Tn]| ≥ cnHn] ≤ V ar[Tn]

(cnHn)2
≤ π2

6c2Hn
2 .

Next, let m = n log n+ cn, and let Bb be the number of balls in bin b. We know E[Bb] = logn+ c.
Then by the Chernoff bound, we have:

P[Bb ≤ 0] = P[Bb ≤ (1− 1)E[Bb]] ≤ exp

(
−E[Bb]

2

)
=≤ exp

(
−(log n+ c)

2

)
Finally, using the union bound, we have P[Some bin is empty] ≤ nP[Bb ≤ 0] = exp(log n− (logn+c)

2 ),
and we can set c = log n+ 2 log(1/δ) to get this less than δ.

Here, using a direct calculation is better than the Chernoff bound. In particular, we have:

P[Bb ≤ 0] =

(
1− 1

n

)m
≤ e−m/n = e−c/n

By the union bound, we have P[Some bin is empty] ≤ e−c, and thus we need c = log(1/δ) to ensure
this is less than δ.

The main takeaway again is that Chernoff bounds are fine when probabilities are small and
we do not want the tightest bounds, but may be weak when probabilities are larger and we want
tighter bounds.
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Problem 2: (The Hoeffding Extension)

In class, we saw that for a r.v. Xi ∼Bernoulli(pi), we have:

E[eθX ] = 1− p+ peθ

Plugging this into the Chernoff bound and optimizing over θ, we obtained a variety of bounds – in
particular, for independent r.vs {Xi} with X =

∑
iXi and µ = E[X] =

∑
i pi, we showed for any

ε > 0:

P[|X − µ| ≥ εµ] ≤ 2 exp

(
−ε2µ
2 + ε

)
We now extend this to more general bounded r.vs.

Part (a)

First, for any θ, argue that the function f(x) = eθx for x ∈ [0, 1] is bounded above by the line
joining (0, 1) and (1, eθ). Using this, find constants α, β such that ∀x ∈ [0, 1]:

eθX ≤ αx+ β

Solution: Recall that f(x) = eθx is a convex function. Now, note that f(0) = 1 and f(1) = eθ.
Therefore, for x ∈ [0, 1], it is bounded above by the line joining (0, 1) and (1, eθ), which means:

eθx ≤ (eθ − 1)x+ 1.

Part (b)

Next, for any random variable Xi taking values in [0, 1] such that E[Xi] = µi, show that:

E[eθXi ] ≤ 1− µi + µie
θ.

Using this, for independent r.vs Xi taking values in [0, 1] with E[Xi] = µi, and defining X =∑
iXi, µ =

∑
i µi, show that:

P[|X − µ| ≥ εµ] ≤ 2 exp

(
−ε2µ
2 + ε

)
(Note: You can directly use the inequality for Bernoulli r.v.s – no need to show the optimization.)

Solution: Let’s take the expectations of both sides of the inequality in the solution of the part
a):

E[eθXi ] ≤ E[(eθ − 1)Xi + 1] = (eθ − 1)E[Xi] + 1 = (eθ − 1)µ1 + 1 = 1− µi + µie
θ.

Now, let X =
∑

iXi, µ =
∑

i µi. Using exactly the same method is we did in class for Bernoulli
r.vs, we get:

P[|X − µ| ≥ εµ] ≤ 2 exp

(
−ε2µ
2 + ε

)
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Part (c) (Optional)

Next, for any random variable Xi taking values in [ai, bi] such that E[Xi] = µi, a similar bounding
technique as above can be used to show:

E
[
eθ(Xi−µi)

]
≤ exp

(
1

8
θ2(b− a)2

)
(This is sometimes referred to as Hoeffding’s lemma – for the proof, see the wikipedia article)

Now consider independent r.vs Xi taking values in [ai, bi] with E[Xi] = µi, and as before, let
X =

∑
iXi, µ =

∑
i µi. Using the above inequality, optimize over θ to show that:

P[(X − µ) ≥ εµ] ≤ exp

(
−2ε2µ2∑n

i=1(bi − ai)2

)
Solution: As in the standard Chernoff inequality, we have:

P[X − µ ≥ εµ] = P
[
eθ(X−µ) ≥ eθεµ

]
≤ min

θ>0

E[eθ(X−µ)]

eθεµ

= min
θ>0

ΠiE[eθ(Xi−µi)]

eθεµ

≤ min
θ>0

exp

(
θ2

8

∑
i

(bi − ai)2 − θεµ

)

To optimize, we choose θ∗ = 4εµ/
∑

i(bi − ai)2, to get:

P[X − µ ≥ εµ] ≤ exp

(
− 2ε2µ2∑

i(bi − ai)2

)

Problem 3: (A Weaker Sampling Theorem: Adapted from MU Ex 4.9)

In class we saw the following ‘sampling theorem’ for estimating the mean of a {0, 1}-valued random
variable: In order to get an estimate within ±ε with confidence 1 − δ, we need n ≥ 2+ε

ε ln 2
δ . A

crucial component in this proof was using the Chernoff bound for Bernoulli(p) random variables.
Suppose instead we want to estimate a more general random variable X (for example, the average
number of hours of TV watched by a random person) – we may not be able to use a Chernoff bound
if we do not know the moment generating function We now show how to to get a similar sampling
theorem which only uses knowledge of the mean and variance of aX.

We want to estimate a r.v. X with mean E[X] and variance V ar[X], given i.i.d samples
X1, X2, . . .. Let r =

√
V ar[X]/E[X] – we now show that we can estimate it up to accuracy ±εE[X]

and confidence 1− δ using O
(
ε2

r2
ln 1

δ

)
samples.
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Part (a)

Given n samples X1, . . . , Xn, suppose we use the estimator X̂ = (
∑n

i=1Xi) /n. Show that n =
O(r2/ε2δ) is sufficient to ensure:

P
[
|X̂ − E[X]| ≥ εE[X]

]
≤ δ

Solution: By linearity of expectation, we have that E[X̂] =
∑n

i=1 E[Xi]/n = E[X]. Moreover,

since Xis are i.i.d., we have that V arX̂ =
∑n

i=1 V ar(Xi)/n
2 = V ar(X)/n = r2E[X]2/n. Now,

using Chebyshev’s inequality we get:

P
[
|X̂ − E[X]| ≥ εE[X]

]
≤ V ar(X̂)

ε2E[X]2

=
r2

nε2

To ensure P
[
|X̂ − E[X]| ≥ εE[X]

]
≤ δ, we can choose n such that r2

nε2
≤ δ. Using n = O(r2/ε2δ)

samples is thus sufficient.

Part (b)

We say an estimator is a weak estimator if it satisfies that P
[
|X̂ − E[X]| ≥ εE[X]

]
≤ 1/4 – using

part (a), show, that we need O(r2/ε2) samples to obtain a weak estimator. Now suppose we are
given m weak estimates X̂1, X̂2, . . . , X̂m, and we define a new estimator X̃ to be the median of
these weak estimates. Show that using m = O(ln(1/δ) weak estimates gives us an estimate X̃ that
satisfies:

P
[
|X̃ − E[X]| ≥ εE[X]

]
≤ δ

What could go wrong if we used the mean of X̂1, X̂2, . . . , X̂m instead of the median?
NOTE: I got the definition of weak estimator inverted in the Homework - this is the correct defini-
tion. Essentially, we want the probability of samples being close to the mean to be > 1/2.

Solution: If we take δ = 1
4 in part a), we see that X̂ is a weak estimator if we use n = O(r2/ε2)

samples. Now we want to show that we need O(log 1/δ) such weak estimators to ensure that the
median of these estimators is within (1± ε)E[X].

Let us introduce new r.vs Yi s.t. Yi = 1, if |X̂i − E[X]| ≤ εE[X], and Yi = 0, if |X̂i − E[X]| ≥
εE[X]. Y =

∑m
i=i Yi is the number of weak estimates for which P

[
|X̂ − E[X]| ≤ εE[X]

]
≤ δ; to

ensure that the median is also within (1± ε)E[X], we need Y > m/2. In other words, we have:

P
[
|X̃ − E[X]| ≥ εE[X]

]
= P [Y ≤ m/2] .
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Moreover, P[Yi = 0] ≤ 3/4, and hence E[Y ] ≥ 3m/4. Now for independent random variables Zi ∼
Bernoulli(pi), with Z =

∑n
i=1 Zi, we saw the following Chernoff Bound:

P[Z ≤ (1− ε)E[Z]] ≤ exp

(
−ε

2

2
E[Z]

)
Using this, we can write:

P [Y ≤ m/2] = P [Y ≤ (1− 1/3)3m/4]

≤ P[Y ≤ (1− 1/3)E[Y ]]

≤ e
−(1/9)E[Y ]

2 ≤ e−m/18.

Now, if we take m ≥ 18 ln(1/δ) = O(log 1/δ), we get P
[
|X̂ − E[X]| ≤ εE[X]

]
≤ δ.

Note though that we only needed to count the weak estimators that fell outside (1± ε)E[X] –
we did not need to assume they are bounded, or have bounded variance, etc. If instead we had
used the mean of the weak estimators, we could have a problem if these bad estimates happened
to take very large values. Using the median made our estimate robust to such outliers.

Problem 4: (Randomized Set-Cover)

In this problem, we’ll look at randomized rounding, which is a very powerful technique for solving
large-scale combinatorial optimization problems. The main idea is that given a problem which can
be written as an optimization problem with integer constraints, we can sometimes solve the relaxed
problem with non-integer constraints, and then round the solutions to get a good assignment. We
will highlight this technique for the Minimum Set-Cover problem.

We are given a collection of m subsets {S1, S2, . . . , Sm} which are subsets of some large set U of
n elements, such that

⋃
i Si = U . The Minimum Set-Cover problem is that of selecting the smallest

number of sets C from the collection {S1, S2, . . . , Sm} such that they cover U , i.e., such that each
element in U lies in at least one of the sets in C.

Part (a)

Argue that the minimum-set cover problem is equivalent to the following integer program:

Minimize
x

∑
i

xi

subject to
∑
i|e∈Si

xi ≥ 1, e ∈ U

xi ∈ {0, 1}, i ∈ {1, 2, . . . ,m}

Let the solution to this problem, i.e., the minimum set-cover, be denoted OPT .
Next, argue that if we solve the same problem, but now change the last constraint to xi ∈ [0, 1]

for all i, then the resulting solution OPTLP of this relaxed problem obeys OPTLP ≤ OPT . Note
that the relaxed problem is an LP and hence can be solved efficiently.
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Solution: For each set Si, we associate a variable xi ∈ {0, 1} that indicates of we want to choose
Si or not. We can then write the solutions for Minimum Set-Cover problem as a vector x ∈ {0, 1}m.
The objective is clearly to minimize the sum of these variables – moreover, since the sets we select
must cover each element in U , we need one constraint to ensure this for each element.

If we replace each constraint xi ∈ {0, 1} with xi ∈ [0, 1] for all i, then the resulting problem
can be solved in a polynomial time as it is a Linear Program (LP). However, by replacing integer
constraints with continuous domains, we have expanded the set of feasible solutions – thus, the
resulting minimization problem must give a smaller value (as all feasible integer solutions are within
our new feasible region), and hence we have that OPTLP ≤ OPT .

Part (b)

Given a solution z to the relaxed LP, we now round the values to obtain a feasible solution for the
original minimum set-cover problem. For each set Si, we generate k = c log n i.i.d Bernoulli(zi)
random variables Xi,1, Xi,2, . . . , Xi,k – if any of them is 1, then we set xi = 1, i.e., we add Si to our
cover C. Prove that the resulting set-cover obeys E[|C|] ≤ c log n ·OPT .

Solution: First, from the definition of the rounding process, for any j ∈ {1, 2, . . . , k}, we have:∑
i

E[Xi,j ] =
∑
i

P[Xi,j = 1] =
∑
i

zi = OPTLP

Therefore, by linearity of expectation, we have:

E[|C|] ≤
∑
i

c logn∑
j=1

E[Xi,j ] = c log n ·OPTLP ≤ c log n ·OPT.

Part (c)

Finally, choose c to ensure that the probability that the resulting set-cover C does not cover any
element e ∈ U is less than 1/n2.

Solution: For any element e ∈ U , and for any j ∈ {1, 2, . . . , c log n}, let Ye,j =
∑

i|e∈Si
Xi,j , and

let Ye =
∑c logn

j=1 Ye,j . Note that for the sets Si containing element e, if any of the Xi,j = 1, then
e is covered – in other words, P[e is covered] = P[Ye ≥ 1]. Moreover, E[Ye,j ] =

∑
i|e∈Si

E[Xi,j ] =∑
i|e∈Si

zi. Let ke = |{i|e ∈ Si}|; since e is fractionally covered in the LP, we have z1 + · · ·+zke ≥ 1,
and thus E[Ye] ≥ c log n. Now using our basic Chernoff bound, we have:

P[Ye ≤ 0] = P [Ye ≤ (1− 1)E[Ye]]

≤ e
−E[Ye]

2 ≤ e
−c logn

2 =
1

nc/2

Thus P[e is not covered] ≤ n−c/2. Moreover, by the union bound, we have that:

P[Any element e ∈ U is not covered] ≤ n1−c/2.
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If c ≥ 6, we get 1− c/2 = −2, and hence P[Every element e ∈ U is covered] ≥ 1− n−2.
(Note: You can actually get a tighter bound of c ≥ 3 using the following argument: First,

we need to observe that probability of e being covered is minimized when zi are all equal, i.e.,
z1 = · · · = zke = 1/ke (this is not obvious - try to prove it. . .). Thus we get for any j:

P

 ∑
i|e∈Si

Yi,j = 0

 ≤ (1− z1) · · · (1− zke) ≤
(

1− 1

ke

)ke
≤ 1

e
.

Therefore, each element is covered with probability at least 1− 1/e if we draw only one sample of
each Xi. Since we draw c log n samples, the probability that element e is not covered is:

P[e is not covered] ≤
(

1

e

)c logn
=

1

nc
.

Now via the union bound, we see that if we take c = 3, then we’ll have:

P[Any element e ∈ U is not covered] ≤ 1

n2
.

Problem 5: (Papadimitrou’s 2SAT Algorithm) (Optional)

The 2SAT problem (Wikipedia entry), and more generally, the boolean satisfiability (SAT) prob-
lem (Wikipedia entry) are one of the cornerstones of theoretical algorithms, and also a very useful
modeling tool for a variety of optimization problems. In the general SAT problem, we want to find a
satisfying assignment for a given a Boolean expression in n Boolean (i.e., {0, 1}, or FALSE/TRUE)
variables {X1, X2, . . . , Xn} typically involving conjunctions (i.e., logical AND, denoted as ∧), dis-
junctions (i.e., logical OR, denoted as ∨) and negations (logical NOT; typically X denotes the
negation of a variable X).

In 2SAT, the expression is restricted to being a conjunction (AND) of several clauses, where
each clause is the disjunction (OR) of two literals (either a variable or its negation). For example,
the expression (X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3) is a 2SAT formula, which has several satisfying
assignments including (X1 = 1, X2 = 1, X3 = 1). Note that in order to find a satisfying assignment,
we need to set the variables such that each clause in the formula has at least one literal which is
TRUE. Although the general SAT problem is known to be NP-complete, 2SAT can be solved in
polynomial time – we will now see a simple randomized algorithm that demonstrates this fact:
Papapdimitrou’s 2SAT Algorithm): Given a 2CNF formula F involving n Boolean variables, and
an arbitrary assignment τ , we check if τ satisfies F . If not, we pick an arbitrary unsatisfied clause,
pick one of its literals uniformly at random, and flip it to get a new assignment τ ′. We then repeat
this until we find a satisfying assignment.

Part (a)

Assume that F has a unique satisfying assignment τ∗, and for any assignment τ , let N(τ) be
the number of literals in τ which agree (i.e., have the same value) as the corresponding literal in
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τ . Argue that each time we execute an iteration of Papadimitrou’s 2SAT algorithm with input
assignment τ , the new assignment τ ′ satisfies:

N(τ ′) =

{
N(τ) + 1 with probability at least 1

2

N(τ)− 1 with probability at most 1
2

Solution: Given any unsatisfied clause, we know that in τ∗ at least one of the literals is flipped
(it could be both are flipped). Since we choose to flip a uniform random literal out of the two, we
are guaranteed that we increase the agreement between our guess τ and τ∗ by 1 with probability
at least 1/2.

Part (b)

Based on the above, argue that the running time Tn of the algorithm is upper bounded by
the first time that a symmetric random walk starting from 0 hits n or −n (equivalently, Tn =

arg minK>0

{
|
∑K

i=1Xi| = n
}

, where Xi are i.i.d Rademacher random variables). Next, show that

E[Tn] = n2, and thus, prove that after O(n3) iterations, Papadimitrou’s algorithm terminates with
probability greater than 1− 1/n.

Solution: See this lecture (and the next) from Tim Roughgarden’s algorithms course for a beau-
tiful exposition of this proof.

One thing you should note: although running the algorithm till O(n3) steps gives the desired
probability, one can get much better bounds if we instead stop after O(n2) steps, and then restart
the process. Markov’s tells us that after 2n2 steps, we find the solution with probability at least
1/2 – now from previous assignments, you know that doing O(log n) independent trials is sufficient
to amplify the probability to 1− 1/n. However, the analysis works for any starting point – so this
does suggest that O(n2 log n) steps of Papadimitrou’s algorithm was sufficient...

Is this surprising? Not really – basically what this says is that the failure probability does follow
a ‘Chernoff-style’ exponential decay. We could not show this directly as the random variables were
not independent – however, Markov’s inequality still works, and we can exploit that in a clever way
to get our result.
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