
ORIE 4520: Stochastics at Scale
Fall 2015

Homework 4: Due October 7th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown
in n bins, we saw the use of negative dependence. We now consider another example, where this
technique can be used to derive Chernoff-style bounds for the number of empty bins.

Suppose n balls are thrown in n bins, and let {Xi}i∈[n] be a collection of indicator r.v.s indicating
whether bin i is empty (i.e., Xi = 1 iff bin i has 0 balls). On the other hand, let {Yi}i∈[n] be a set
of i.i.d. Bernoulli r.v.s which are 1 with probability (1− 1/n)n.

Part (a)

For any k ≥ 1, show that E[X1X2 . . . Xk] ≤ E[Y1Y2 . . . Yk].

Part (b)

Let X =
∑n

i=1Xi and Y =
∑n

i=1 Yi. Using the above result, prove that for any θ ≥ 0, we have:

E[eθX ] ≤ E[eθY ]

Hint: Think of the Taylor series of the exponential function.

Part (c)

Finally, using this result, state a Chernoff bound for P[X ≥ (1 + ε)E[X]].
(You can use bounds you know from before without re-deriving them).

Problem 2: (Bucket Sort)

Suppose we are given n = 2m elements, each of which are k bit sequences drawn uniformly at
random from U = {0, 1}k (where k ≥ m). We’ll now consider a simple deterministic algorithm
for sorting these, that takes O(n) time on average. First, we place place each element in one of
m buckets, where the jth bucket (j ∈ {0, 1, . . . , 2m − 1) is used to place all elements whose first m
bits correspond to the number j. Next, we use any sorting algorithm with quadratic running time
(for example, a simple bubble sort or insertion sort) to sort the elements in each bucket, and then
merge the buckets. Prove that the expected running time of this algorithm is O(n).
Hint: Recall the analysis of the FKS hashing scheme.

Problem 3: (Open Addressing)

In class, we saw the chaining technique for designing hash tables for answering exact set-membership
(i.e., without allowing for false-positives). Another common approach is that of open-addressing,
where given a set S of m items, we hash the elements in a single array of length > m. Each entry
in the array either contains an element from S, or is empty. The hash function defines for each
element x ∈ U , a probe sequence {h(x, 1), h(x, 2), . . .}. To insert an element x in the array, we first
check position h(x, 1) – if this is occupied, we try to insert it in h(x, 2), and so on till we find an
open cell in the array.
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Part (a)

Suppose we use an array of length 2m to store m items, and suppose each hash-function h(x, i) is
independent and uniform over {0, 1, . . . , 2m− 1}. Show that for any of the first m elements to be
inserted, the insertion required more than k probes with probability ≤ 2−k – hence show that the
probability that the ith insertion (for i ≤ m) took more than 2 log2m probes is less than 1/m2.

Part (b)

Next, let X be the maximum number of probes required by an item during insertion of the first m
items. Show that X is less than 2 log2m with probability at least 1 − 1/m. Using this, also show
that the E[X] is O(logm).

Problem 4: (Extensions of Bloom Filters)

In class we saw the basic Bloom filter, where we used k independent random hash-functions
{h1, h2, . . . , hk} to hash a set S of m elements into an array A of n bits. Recall that in order
to get a false-positive rate of δ = O(1), we chose n = cm, for some constant c , and k c ln 2 (in
particular, for false-positive rate of 2%, we used c = 8 and k = 6). We now see how this basic
structure can be modified in various ways.

Part (a)

In order to support item deletions in addition to insertions and look-ups, we can replace each bit
A[i] in A with a counter – when an element is hashed to bucket i, we increment A[i], and to delete
an element x, we decrement the counter for each A[i] corresponding to {h1(x), h2(x), . . . , hk(x)}.
As before, if we use n = O(m) and fixed-size counters of b-bits. What is the probability that
counter A[i] overflows after inserting m elements? Also argue that O(log logm)-bit counters are
necessary and sufficient to prevent overflow in any counter (with high probability).

Part (b)

Suppose we use the same hash functions {h1, h2, . . . , hk} to hash two separate sets S1 and S2 (both
of size m) – let the resulting Bloom filters (each of n bits) be A1 and A2 respectively. Suppose we
create a new Bloom filter AOR by taking the bit-wise OR of the bits of A1 and A2. Is this the same
as the Bloom filter constructed by adding the elements of S1 ∪ S1 one at a time?

Part (c)

Suppose we create another new Bloom filter AAND by taking the bit-wise AND of the bits of A1

and A2. Argue that this is not the same as the Bloom filter constructed by adding the elements of
S1 ∩ S2 one at a time. However, also argue that AAND can be used to check if x ∈ S1 ∩ S2 with
one-sided error (i.e., give an algorithm that always returns TRUE if x ∈ S1 ∩ S2), and explain how
we can get false-positives.
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Problem 5: (Similarity functions with no linear-LSH family)

In class we discussed locality sensitive hashing for the Hamming and Jaccard similarity functions
Recall that for a ground set U and subsets A,B ⊆ U , these two distances corresponded to:

sHamming(A,B) = 1− A∆B

|U|
, sJaccard(A,B) =

|A ∩B|
|A ∪B|

,

where A∆B is the symmetric difference between sets A and B (i.e., A∆B = (A ∪ B) \ (A ∩ B))
Moreover, in both cases, we obtained families of hash-functions H satisfying:

P[h(x) = h(y)] = s(x, y)

A natural question to ask is if such linear-LSH families exists for other similarity functions, in
particular, for two other natural subset-similarity measures – the Overlap and Dice similarities:

sOverlap(A,B) =
|A ∩B|

min{|A|, |B|}
, ddice(A,B) =

2|A ∩B|
|A|+ |B|

Part (a)

As in class, suppose we define a distance function d : U × U → [0, 1] corresponding to a similarity
function as d(x, y) = 1−s(x, y). Show that for a given similarity function s, if we have a linear-LSH
family H, i.e., whose hash functions satisfy P[h(x) = h(y)] = s(x, y), then the distance functions
must obey the triangle inequality, i.e., for any x, y, z ∈ U , we must have:

d(x, y) + d(y, z) ≥ d(x, z)

Part (b)

Using the above result, prove that the Overlap and Dice similarity functions can not have a linear-
LSH family.
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