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Problem 1: (LSH for Angular Similarity)

For any vectors x, y ∈ Rd, the angular distance is the angle (in radians) between the two vectors

– formally, dθ(x, y) = cos−1
(

x.y
||x||2||y||2

)
(where cos−1(·) returns the principle angle, i.e., angles in

[0, π]). The (normalized) angular similarity is given by sθ(x, y) = 1− dθ(x, y)/π.
We now want to construct a LSH for the angular similarity metric. Consider the following

family of hash functions: we first choose a random unit vector σ (i.e., σ ∈ Rd with ||σ||2 = 1), and
for any vector x, define hσ(x) = sgn(x.σ) (i.e., the sign of the dot product of x and σ). Argue that
for any x, y ∈ Rd, we have:

P[hσ(x) = hσ(y)] = sθ(x, y)

Hint: For any pair x and y in Rd, there is a unique plane passing through the origin containing x
and y – convince yourself that dθ(x, y) is precisely the angle between x and y in this plane. Also,
given any vector σ, its dot product with x and y only depends on the projection of σ on this plane.
Now what can you say about the signs of the dot products of x and y with a random unit vector?

Solution: Vectors x and y always define a plane, and the angle between them is measured in this
plane. Figure (1) is a “top-view” of the plane containing x and y.

Figure 1: Two vectors make an angle θ

Suppose we pick a hyperplane through the origin. This hyperplane intersects the plane of x
and y in a line. Figure (1) suggests two possible hyperplanes, one whose intersection is the dashed
line and the other’s intersection is the dotted line. To pick a random hyperplane, we actually pick
the normal vector to the hyperplane, say σ. The hyperplane is then the set of points whose dot
product with σ is 0.

First, consider a vector σ that is normal to the hyperplane whose projection is represented by
the dashed line in Fig. (1); that is, x and y are on different sides of the hyperplane. Then the dot
products σ.x and σ.y will have different signs. If we assume, for instance, that σ is a vector whose
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projection onto the plane of x and y is above the dashed line in Fig. (1), then σ.x is positive, while
σ.y is negative. The normal vector σ instead might extend in the opposite direction, below the
dashed line. In that case σ.x is negative and σ.y is positive, but the signs are still different.

On the other hand, the randomly chosen vector σ could be normal to a hyperplane like the
dotted line in Fig. (1). In that case, both σ.x and σ.y have the same sign. If the projection of σ
extends to the right, then both dot products are positive, while if σ extends to the left, then both
are negative.

What is the probability that the randomly chosen vector is normal to a hyperplane that looks
like the dashed line rather than the dotted line? All angles for the line that is the intersection of
the random hyperplane and the plane of x and y are equally likely. Thus, the hyperplane will look
like the dashed line with probability θ/π and will look like the dotted line otherwise.

Problem 2: (Choosing LSH Parameters for Nearest Neighbors)

An important routine in many clustering/machine learning algorithms is the (c,R)-Nearest-Neighbors
(or (c,R)-NN) problem: given a set of n points V and a distance metric d, we want to store V in
order to support the following query:
Given a query point q, if there exists x ∈ V such that d(x, q) ≤ R then, with probability at least
1− δ, we must output a point x′ ∈ V , such that d(x′, q) ≤ cR.

We now show how to solve this problem using LSH. Assume that we are given a (R, cR, p1, p2)-
sensitive hash family H 1. As in class, we can amplify the probabilities by first taking the AND
of r such hash functions to get a new family HAND; next, we can take the OR of b hash functions
from HAND to get another family HOR−AND.

Given the set V , we hash each element using a single hash function g from HOR−AND (which
corresponds to b × r hash functions from H). Now given a query point q, we hash q using our
cascaded hash-function g, and find all y ∈ V such that g(y) = g(q) – let this set be denoted Yq.
Finally, we can check d(q, y) for each y in Yq, and return those y for whom d(q, y) < cR.

Part (a)

If there exists x ∈ V such that d(x, q) ≤ R then, argue that we output x with probability 1−(1−pr1)b.
On the other hand, also show that the expected number of false positives (i.e., points x′ ∈ V such
that d(x′, q) > cR) that we consider per hash function in HAND is at most npr2.

Solution: From the definition of a (R, cR, p1, p2)−sensitive hash family, we know that for any
x ∈ V such that d(x, q) ≤ R, the probability that there is a collision is at least p1 – hence the
probability that all the hash functions do not collide is 1 − pr1. Now since we are taking the OR
of b such hash functions from the family HAND, the probability that none of them output x is at
most 1− (1− pr1)b.

On the other hand, for any x ∈ V such that d(x, q) ≥ cR, we know that for any composite hash
function in HAND, a false collision occurs with probability at most pr2. Now to bound the expected

1Recall in class we defined a (d1, d2, p1, p2)−sensitive hash family – for convenience, we are setting the distances
to R and cR
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number of false positives, note that the number of elements x such that d(x, q) ≥ cR is bounded
by |V | = n – thus the expected number of false positives is at most npr2.

Part (b)

Note that since we check for false positives, we never output one – however, we have O(1) runtime
cost for each false positive (to check its distance). Choose r to ensure that the expected number of
false-positives per hash function in HAND is 1. Using this choice of r, show that for the guarantee
we desire for the (c,R)-NN problem, we need to choose b = nρ ln(1/δ), where ρ = ln(1/p1)

ln(1/p2)
.

Solution: To ensure that on average we have at most one false positive, we can choose r such
that npr2 = 1 – thus r = lnn/ ln(1/p2) – thus (1/p1)

r = exp (ln(1/p1) lnn/ ln(1/p2)) = nρ. Now
suppose we choose b = nρ ln(1/δ) – then we have:

1− (1− pr1)b = 1−
(

1− 1

nρ

)nρ ln(1/δ)
≥ 1− e− ln(1/δ)

= 1− δ,

where we have used (1− x) < e−x. Thus, we have that for this choice of b and r, any x ∈ V such
that d(x, q) ≥ cR is returned with probability at least 1− δ, while we return on average one x′ ∈ V
such that d(x′, q) ≤ cR.

Problem 3: (More on the Morris’ Counter)

Recall in class we saw the basic Morris counter, wherein we initiated the counter to 1 when one
item arrived, and upon each subsequent arrival, incremented the counter with probability 1/2X .
We also showed that after n items have arrived, E[2X ] = n+ 1.

Part (a)

Prove that the variance of the counter is given by:

V ar(2Xn) =
n2 − n

2

Using this, find the probability that the average of k Morris counters is less than n+ 1− εn after
n items have passed.
Hint: Use induction for E[22X ].

Solution: Let counter’s state after seeing n items be Xn – recall that we showed in class that
E[2Xn ] = n+ 1. Since, we want to prove that V ar(2Xn) = n2−n

2 , this is equivalent to showing:

E[22Xn ] = V ar(2Xn) + (E[2Xn ])2 =
n2 − n

2
+ (n+ 1)2 =

3

2
n2 +

3

2
n+ 1.
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We will now show this by induction. Clearly for X0 = 1, we have E[22·1] = 3
2(1)2 + 3

2(1) + 1 = 4.
For the inductive step, we have:

E[22Xn ] =
∞∑
j=0

P(2Xn−1 = j) ·E[22Xn |2Xn−1 = j]

=
∞∑
j=0

P(2Xn−1 = j) ·
[

1

j
· 4j2 +

(
1− 1

j

)
· j2
]

=

∞∑
j=0

P(2Xn−1 = j) · (j2 + 3j)

= E[22Xn−1 ] + 3 ·E[2Xn−1 ] =
3

2
(n− 1)2 +

3

2
(n− 1) + 1 + 3n

=
3

2
n2 +

3

2
n+ 1.

Now, assume we have k Morris counters X1, · · · , Xk, and Z = 1
k

∑k
j=1 2Xj . Then, by independence:

V ar(Z) =
1

k2
V ar

 k∑
j=1

2Xj

 =
n2 − n

2k
.

By Chebyshev’s inequality:

P(Z < n+ 1− εn) ≤ P(|Z − (n+ 1)| > εn) ≤ V ar(Z)

(εn)2
=
n− 1

2knε2
.

Part (b)

Next, suppose we modify the counter as follows: we still initialize counter Y to 1 when the first item
arrives, but on every subsequent arrival, we increment the counter by 1 with probability 1/(1+a)Y ,
for some a > 0. Let Yn be the counter-state after n items have arrived – choose constants b, c such
that b · (1 + a)Yn + c is an unbiased estimator for the number of items (i.e., E[b · (1 + a)Yn + c] = n).

Solution: First, since Y0 = 0, hence E[·(1 + a)Yn ] = 1. Now as in the previous analysis, we have:

E[(1 + a)Yn ] =
∞∑
j=0

P(Yn−1 = j)E[(1 + a)Yn |Yn−1 = j]

=
∞∑
j=0

P(Yn−1 = j)

(
1

(1 + a)j
(1 + a)j+1 +

(
1− 1

(1 + a)j

)
(1 + a)j

)
= E[(1 + a)Yn−1 ] + a.

Thus, we have that E[(1 + a)Yn ] = 1 + na. Thus, if we choose b = 1/a, c = −1/a, we get:

E[b · (1 + a)Yn + c] =
1 + na

a
− 1

a
= n.
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Part (c) (OPTIONAL)

Now suppose you are restricted to use a single Morris counter, but can choose a as above. Find
the variance of the estimator, and using Chebyshev, find the required a to ensure that the estimate
is within n ± εn with probability at least 1 − δ. What is the expected storage required by this
counter?

Problem 4: (Dyadic Partitions and the Count-Min Sketch)

In this problem, we modify the Count-Min sketch to give estimates for range queries and heavy-
hitters. For this, we first need an additional definition. For convenience, assume n = 2k; the dyadic
partitions of the set [n] are defined as follows:

I0 = {{1}, {2}, . . . , {n}}
I1 = {{1, 2}, {3, 4}, . . . , {n− 1, n}}
I2 = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {n− 3, n− 2, n− 1, n}}

...

Ik = {{1, 2, . . . , n}}

Part (a)

Let I = I0∪I1∪ . . .∪Ik be the set of all dyadic intervals. Show that |I| ≤ 2n. Moreover, show that
any interval [a, b] = {a, a+ 1, . . . , b} can be written as a disjoint union of at most 2 log2 n sets from
I. (For example, for n = 16 = 24, the set [6, 15] can be written as {6} ∪ {7, 8} ∪ {9, 10, 11, 12} ∪
{13, 14} ∪ {15}, which is less than 2× 4 = 8 sets.)

Solution: By definition of the dyadic intervals, we have that for any i ∈ {0, 1, . . . , k}, we have that
|Ii| = n/2i. Thus the number of dyadic intervals is given by |I| =

∑k
i=0 n2−i ≤ n

∑∞
i=0 2−i = 2n.

For the second claim, we can use induction on k = log2 n. The base case of k = 1 (n = 2) is
easy to check. Now suppose that for k − 1 we have that any sub-interval can be represented as
a disjoint union of 2(k − 1) dyadic intervals. Now given a sub-interval [a, b] = {a, a + 1, . . . , b} of
[2k], if either a > 2k−1 = n/2 or b ≤ 2k−1 = n/2, then we are done by the inductive hypothesis.
To complete the proof, we need to show that if a < n/2 < b, then we can write [a, b] as a disjoint
union of 2k dyadic intervals.

We first show that for any a ∈ [2k−1], we can write the set {1, 2, . . . , a} as a disjoint union of
at most k − 1 dyadic intervals. This again we can see by induction. Again the base case is easy to
check. Moreover, for any a ∈ [2k−1], we have two cases: i) if a ≤ 2k−2, then by induction we need
≤ k − 2 intervals, and ii) if a > 2k−2, then by induction we need ≤ 1 + k − 2 = k − 1 intervals.

Now by symmetry, we also have that for any interval {b, b + 1, . . . , 2k−1} we can write it as a
disjoint union of at most k − 1 dyadic intervals (just reverse the sets!). Returning to the main
proof, given a < n/2 < b, we can write [a, b] = [a, n/2] ∪ [n/2, b] – from the above claims, each can
be written as a disjoint union of k − 1 dyadic intervals, and hence we have [a, b] can be written
using 2k − 2 < 2k intervals, which completes the proof.
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Part (b)

In class, given a stream of m elements, we saw how to construct a Count-Min sketch for the
frequencies of items i ∈ [n], and how to use it for point queries (i.e., to estimate fi for some i ∈ [n]).
We now extend this to range queries – estimating F[a,b] =

∑b
i=a fi for given a, b.

Note first that the basic Count-Min sketch can be interpreted as constructing a sketch for
frequencies of set-membership for the sets in I0. We have also seen how to make hash functions
for general set-membership (for example, the Bloom filter!) – we can thus extend the Count-Min
sketch to include an estimate for the frequencies of all the dyadic intervals. Using this new sketch,
show that for a given range query [a, b] , we can use a Count-Min sketch with R = log(1/δ) rows
and B = 2/ε columns to get an estimate F[a,b] satisfying:

P

F[a,b] <
∑
i∈[a,b]

fi + 2mε log2 n

 ≥ 1− δ

Solution: (Note: Correction in the above expression - the RHS of the bound on F[a,b] should be

log2 n, not log n as was given in the problem.)
First, note that the size of the Count-Min data-structure did not depend on the number of

elements [n] – thus, we can adapt the Count-Min sketch to store counts FI for all sets I ∈ I. Note
however that each i ∈ [n] belongs to log2 n dyadic intervals – thus instead of counting m items, we
are counting m log2 n items.

Next, from the previous part, we know that any interval [a, b] can be written as the disjoint union
of ≤ 2 log2 n dyadic intervals – let us denote this set as I[a,b]. Thus we have F[a,b] =

∑
I∈I[a,b] FI .

Moreover, note that each FI ≤ m.
Now from the performance bounds for the Count-Min sketch (with R = log(1/δ) rows and

B = 2/ε columns, and m log2 n items in the stream) we saw in class, we know that for any I ∈ I,
we have:

P

FI < ∑
i∈[a,b]

fi + (m log2 n)ε

 ≥ 1− δ

Since we are adding 2 log2 n such counts for F[a,b], we get that:

P

F[a,b] <
∑
i∈[a,b]

fi + 2mε log2 n

 ≥ 1− δ

Part (c)

The φ-heavy-hitters (or φ-HH) query is defined as follows:
Given stream {x1, x2, . . . , xm} with xi ∈ [n], and some constant φ ∈ [0, 1], we want to output a
subset L ⊂ [n] such that, with probability at least 1 − δ, L contains all i ∈ [n] such that fi ≥ φm,
and moreover, every i ∈ L satisfies fi ≥ φm/2.
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We now adapt the above sketch for the φ-HH problem. First, using the union bound, argue
that if we choose δ = γ/2n, then we have that for all dyadic intervals I ∈ I, we have that the
frequency estimate FI obeys: P

[
FI <

∑
i∈I fi +mε

]
≥ 1− γ. Thus, argue that if we use ε < φ/2,

then the set of all i ∈ [n] such that F{i} > φm is a solution to the φ-HH problem.

Solution: (Note: There was a typo in the probability bound – it should be 1 − γ, not 1 − δ.)
Suppose we choose δ = γ/2n. Then, from the union bound, we have that:

P

[
∪I∈I

{
FI >

∑
i∈I

fi +mε

}]
≤ 2nP

[{
FI >

∑
i∈I

fi +mε

}]
≤ 2nδ = γ

Now, if we use ε = φ/2, then we have that:

• For any i ∈ [n] such that fi ≥ φm, then F{i} is also ≥ φm (recall that the Count-Min sketch
always overestimates frequencies!).

• For any i ∈ [n] such that fi < φm/2, then with probability ≥ 1 − 2γ, we have that F{i} is
also ≤ φm.

Thus, if we use ε < φ/2, then the set of all i ∈ [n] such that F{i} > φm is a solution to the φ-HH
problem (with γ instead of δ as the probability bound).

Part (d)

Note though that the brute force way to find all i ∈ [n] such that F{i} > φm requires n point
queries. Briefly argue how you can use the frequency estimates FI for the dyadic intervals to find
the same using O(log n/φ) queries.
Hint: Consider a binary tree defined by the dyadic intervals, with the root as Ilogn = {[n]}, and the
leaves as I0 = {{1}, {2}, . . . , {n}}. Argue that for every heavy-hitter node i, every parent node in
the tree has FI > φm. Also, at any level j, how many sets I ∈ Ij can have FI > φm?

Solution: The main idea is that if fi > φm, then fI > φm for any dyadic interval I that contains
i. Thus, we can start from the top of the tree of dyadic intervals, and at each stage, only expand
dyadic intervals I such that FI > φm. Now note that at any level of the tree, the dyadic intervals
form a partition of [n] – thus their frequencies must add up to m. By a counting argument, we see
that the number of intervals I ∈ I〉, i ∈ {0, 1, . . . , log2 n} such that fI > φm is O(1/φ) (moreover,
with high probability, the number of intervals such that FI > φm is O(1/φ)). Finally, the depth of
the tree is log n. Thus, in O(log n/φ) time, we can find all i such that Fi > φm.
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