
ORIE 4520: Stochastics at Scale
Fall 2015

Homework 7: Due December 4th, 12pm
Sid Banerjee (sbanerjee@cornell.edu)

Problem 1: (Distributed Resource Allocation (ALOHA!))

(Adapted from M& U, Problem 5.11) In this problem, we study a simple distributed protocol for
allocating agents to shared resources, wherein agents contend for resources but ‘back off’ in the
face of contention. One example application is in the design of multiple-access protocols in wireless
networks, where this scheme forms the basis of the ALOHA protocol and its variants.

Consider the following simplified model of a cell-phone network: the wireless spectrum is divided
into a set of n channels, where every cell-phone can access every channel, but each channel can
support at most one cell-phone conversation. Now suppose n users are trying to simultaneously
download a file using their cell-phones – we want a way to match them to channels in a distributed
manner.

Part (a)

We start with n users and n channels, and assume the system evolves over rounds. In every round,
users pick from the n channels independently and uniformly at random. A user who picks a channel
not picked by any other user, is served in that round (i.e., finishes downloading the file) and removed
from consideration. The remaining users again pick one of the n channels in the next round. We
finish when every user is served.

If there are m users at the start of a round. what is the expected number of users at the start
of the next round?

Part (b)

Suppose that in every round, the number of users removed is exactly the expected number of users
rounded up to the nearest integer. Show that all the users are served in O(log log n) rounds.

Hint: If xj is the expected number of users left after j rounds, show that xj+1 ≤ (xj)
2

n . Now define
yj = log xj, and solve the iteration.

Problem 2: (The SIS Epidemic on Random Graphs)

Consider an SIS epidemic on an undirected graph G, where neighboring nodes meet at rate λ. In
class, we showed the following thresholds for a long infection lifetime:

λ <
1

dmax
⇒ E[Text] = O(1) , λ >

1

η(k)
⇒ E[Text] = Ω

(
ek
)

where dmax is the maximum degree of nodes in G, and η(k) is the generalized isoperimetric constant,
which for any k ≤ n is defined as:

η(k) = min
S⊂V,|S|≤k

|E(S, S)|
|S|

(where |E(S, S)| is the number of edges between S and S = V \ S).
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We now study these thresholds in the case where G is generated as a G(n, p) random graph in
the connected regime (i.e., with average degree (n − 1)p > lnn) – in particular, we want to show
that the phase transition threshold is λ = Θ(1/(n− 1)p) (w.h.p, as n→∞).

Part (a)

Consider a graph G generated from the G(n, p) model with p = 6 lnn/(n− 1), and let d = (n− 1)p
and Dmax be the average and maximum degrees respectively. Prove that:

P [Dmax > 2d] ≤ 1

n

Thus, if we choose λ < 1/2d, then, with high probability, an SIS epidemic on G has fast extinction.
Hint: For X =

∑
Xi with Xi ∈ [0, 1] i.i.d, recall the Chernoff bounds on the upper and lower tails:

P[X > (1 + ε)E[X]] < e−ε
2E[X]/3 , P[X < (1− ε)E[X]] < e−ε

2E[X]/2

Part (b)

We now want to show a similar threshold for λ to ensure a long-lasting epidemic. As before,
consider a graph G generated from the G(n, p) model, and average degree d = (n − 1)p. For any
k ≤ n, and any ε, argue that:

P[η(k) < d/3] =
k∑
i=1

(
n

i

)
P [δi < d · i/3]

where δi ∼ Binomial(i(n− i), p).
Hint: For any set S with |S| = i, what is the distribution of the cut-size |E(S, S)|?

Part (c)

Let k = n/3, and define εi = 1 − (n−1)
3(n−i) – argue that for any n > 1 and i ≤ n/3, we have that

εi ∈ (1/2, 1). Now, using the above equation and a Chernoff bound, show that:

P[η(n/3) < d/3] ≤
n/3∑
i=1

(
n

i

)
e−i(n−i)pε

2
i /2 ≤

n/3∑
i=1

(
n

i

)
e−i(n−1)p/8

Part (d) (Optional)

Now suppose we choose p = 16 lnn/(n− 1). Using the inequality
(
n
i

)
≤ ni

i! , show that:

P[η(n/3) < d/3] ≤
n/3∑
i=1

n−i

i!
≤ e1/n − 1

Thus, argue that choosing λ > 3/d ensures that as n → ∞, with probability going to 1, the SIS
epidemic has E[Text] = Ω(en/3).
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Problem 3: (Differential Equation Approximations of CTMCs)

In class, for any CTMC X(t), we defined the rate matrix A (where for i 6= j, Aij = λij , the rate
of transitions from state i to state j; moreover Aii = −

∑
j Aij), and transition matrix P (t) (where

Pi,j(t) = P[X(t) = j|X(0) = i|]). We also discussed that these matrices satisfy Kolmogorov’s

forward equation: dP (t)
dt = P (t)A. We now formally show one example of how we can use this to

get exact differential equations for E[X(t)].
(Warning: This is a somewhat roundabout way of deriving the differential equation for E[X(t)],
but it will give you a feel for the more general theory behind CTMC and differential equations.)

Part (a)

Consider the simple birth process of cellular growth: we start with X(0) = 1 cell, and each cell
splits into two at rate λ (i.e., after Exponential(λ) time). Let X(t) be the number of cells at time
t – clearly this is a CTMC, taking values in N = {1, 2, . . .}. Write down the rate matrix A and the
state transition diagram for X(t).
Note that the state-transition diagram and rate matrix are infinite – we did not explicitly deal with
this in class, but most things we discussed extend to this case. For this question, you need to specify
the state-transitions and rate matrix for any single state i.

Part (b)

Let π(t) be the distribution of the number of cells X(t) at time t. Since X(0) = 1, this means
π1(0) = 1, πk(0) = 0 for k > 0. Moreover, we have π(t) = π(0)P (t). Now argue that for any k ∈ N:

dπk(t)

dt
=

[
π(0)

dP (t)

dt

]
k

= −kλπk(t) + (k − 1)λπk−1(t),

Solve this equation explicitly for π1(t) – does the answer make sense?
Hint: Note that for any n× 1 row vector π and n× n matrix P , we have [πP ]k =

∑
j πjPjk – for

an infinite vector {πk}k∈N and matrix {Pij}i,j∈N, we can define multiplication in a similar manner.

Part (c)

For any random variable X, recall we defined the generating function φX(s) = E[sX ]. Let F (s, t) =

φX(t)(s). Argue that F (s, t) =
∑

k∈N πk(t)s
k, and also that E[X(t)] = ∂F (s,t)

∂s

∣∣∣
s=1

(i.e., evaluate the

partial derivative ∂F (s,t)
∂s at s = 1).

Part (d)

Next, prove that:
∂F (s, t)

∂t
= λ(s2 − s)∂F (s, t)

∂s

Hint: Write out both ∂F (s,t)
∂t and ∂F (s,t)

∂s by differentiating each term in the summation, and compare
coefficients of sk. You do not need to justify the correctness of operations on infinite sums.
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Part (e)

Finally, use the fact that ∂2F (s,t)
∂s∂t = ∂2F (s,t)

∂t∂s (i.e., for the function F (s, t), you can take partial
derivatives in any order – note that is not true in general!), to show that:

dE[X(t)]

dt
= λE[X(t)]

Hint: Differentiate the above equation w.r.t. s, and set s = 1.

Problem 4: (Designing a Viral Advertising Campaign)

The SIS epidemic can be used as a model for brand recall amongst consumers. Suppose we have a
population of n people, wherein each peron knows exactly d other people (i.e., the social network
is d-regular), and pairs who know each other meet at rate λ. At time 0, n0 people are aware a
certain brand – for example, they are using a certain new app. Subsequently, people who are using
the app forget about it at rate 1, while people who have forgotten about it are reminded of it when
they meet someone who currently is using it.

Part (a)

Let X(t) be the number of people using the app at time t – in class we discussed that X(t) can
be stochastically dominated from above by a birth-death Markov chain Y (t) (i.e., Y (t) ≥ X(t) at
all t) with the following transitions – Y (t) goes from n→ n− 1 at rate n, and for all other states
Y (t) ∈ {1, . . . , n− 1}, we have:

Y (t)→ Y (t)− 1 at rate Y (t) , Y (t)→ Y (t) + 1 at rate Y (t) · λ · d (1)

Note in particular that under the above transitions, Y (t) = 0 is an absorbing state. Now we use
the differential equation method to find the phase transition for the SIS process. Suppose we ignore
the boundary condition at n, and instead let the transitions in Equation 1 hold for all Y (t) > 0
(note that this maintains the stochastic dominance). Argue that:

dE[Y (t)]

dt
= (λd− 1)E[Y (t)],

and hence E[Y (t)] = Y (0)e(λd−1)t. From this we see that if λd < 1, then all people stop using the
app after constant time.
Note: You don’t have to formally prove the last point – however, convince yourself that this is easy
to show using Markov’s inequality.

Part (b)

Suppose now we have some budget to design a viral advertising campaign. To do so, we hire k
people (for some fixed k, which is much smaller than n), who each make visits to random people
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at rate 1, and remind them to use the app. Argue that X(t) is now stochastically dominated from
above by a Markov chain Y (t) with transitions

Y (t)→ Y (t)− 1 at rate Y (t) , Y (t)→ Y (t) + 1 at rate Y (t) · λ · d+ k

Note though at Y (t) = 0, the above transition is not true, as we want it to be absorbing. However,
we ignore this to get the following differential equation approximation for the expected trajectory:

dE[Y (t)]

dt
= (λd− 1)E[Y (t)] + k

Show that the solution to this equation is:

E[Y (t)] =

(
E[Y (0)] +

k

λd− 1

)
e(λd−1)t − k

λd− 1

Using this solution, observe that for any fixed k, if λd < 1, then the epidemic lifetime is still small.
This suggests that using a fixed number of marketing agents does not help make a brand go viral.

Part (c)

Suppose instead we design the following referral scheme – each user who is currently using the app
is offered, at rate α, a reward for sending a promotion mail reminding one of their friends to start
using the app. Moreover, assume that the social network graph has η(n/2) = d/2. Argue that X(t)
is now stochastically dominated from below by a Markov chain Y (t) over the states {0, 1, . . . , n/2},
with transitions:

Y (t)→ Y (t)− 1 at rate Y (t) , Y (t)→ Y (t) + 1 at rate Y (t) · (λd/2 + α)

This suggests the following differential equation for the expected trajectory (ignoring the upper
bound on the state of Y (t)):

dE[Y (t)]

dt
= (λd/2 + α− 1)E[Y (t)]

Using this as a guide, what value of α should you choose to ensure the app continues to be used
by people for a long time?

Problem 5: (The Preferential Attachment Process) (OPTIONAL)

In this question, we will use differential equation approximations to study the preferential attach-
ment networks. This is a model of network growth that is used to explain the occurrence of
power-law degree distributions, which are often seen in real networks. For a network with n nodes,
the degree distribution F (k) is the fraction of nodes with degree ≤ k – this is said to exhibit
power-law-α if:

1− F (k) ∼ ck−α

In other words, the fraction of nodes with degree greater than k is proportional to k−α.
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Part (a)

To understand why power-laws are unexpected, consider the G(n, p) graph, with p = λ/(n − 1).
Argue that for any node i, its degree Di ∼ Binomial(n − 1, p) ≈ Poisson(λ) for large n. Now
since the fraction of nodes with degree less than k is same as the probability that a random node
has degree less than k, argue that for large n, 1 − F (k) = 1 −

∑k
i=0 e

−λλi/i!. Note that this is
exponential in k (rather than power-law).

Part (b)

The preferential attachment model is a dynamic model for generating a graph, which results in a
power-law degree distribution. We will study a model for forming a directed graph – however it
can be used for undirected graphs in a similar way.

The model proceeds as follows: time is slotted and nodes arrive one-by-one in the order
{1, 2, . . . , n}. Each arriving node brings a directed edge – the node arriving at time t chooses
the existing node to link to uniformly at random with probability 1− p, and with probability p, it
picks an existing node v with probability proportional to its in-degree Dv(t). Note that at the end
of slot t, the number of nodes in the system is t, and so is the number of directed edges (and hence
the sum of in-degrees).

For node v, argue that its in-degree Dv(t) has the following dynamics: Dv(t) = 0 if t ≤ v, and
for all t > v, Dv(t) transitions as:

Dv(t) = Dv(t− 1) + 1 with probability
1− p
t

+
pDv(t)

t
, else Dv(t) = Dv(t− 1)

This suggests that E[Dv(t)] has the following differential equation approximation:

dE[Dv(t)]

dt
≈ 1− p

t
+
pE[Dv(t)]

t

Part (c)

Using the boundary conditions E[Dv(v)] = 0, solve the above equation to get (for t > v):

E[Dv(t)] ≈
(1− p)
p

((
t

v

)p
− 1

)
,

Part (d)

An important thing to note from the above characterization is that the (expected) in-degree of a
node depends on when it arrived (in contrast to the G(n, p) setting, where all nodes were symmet-
ric). Now after all n nodes arrive, we can approximate the degree distribution F (k) as the fraction
of nodes v ∈ {1, 2, . . . , n} for which E[Dv(t)] ≤ k. Let γ = p

(1−p) – show that:

1− F (k) = (γk + 1)
− 1

p

Thus, the resulting graph has a power-law degree distribution with α = 1/p.
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