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marginals and conditionals

let X and Y be discrete rvs taking values in N. denote the

: computing individual pmfs from joint pmfs as
: pmf of X given Y = y (with py(y) > 0) defined as:

more generally, can define P[X € A|Y € B] for sets A, B € N
see also this



the basic ‘rules’ of Bayesian inference

let X and Y be discrete rvs taking values in N, with p(x,y)

for x,y € N, we have:

for x € N, we have:

and most importantly!

for any x,y € N, we have:

see also for an intuitive take on Bayes rule



fundamental principle of Bayesian statistics

assume the world arises via an underlying

use random variables to model all unknown

incorporate all that is known by conditioning on

use Bayes rule to



pros and cons

— conceptually simple and easy to interpret
— works well with and

— can handle : no need for different estimators,
hypothesis testing, etc.

— they need (subjectivity. . .)
— they may be more : computing normalization
constant and expectations, and updating priors, may be difficult



basics of Bayesian inference




the likelihood principle

given model M with parameters ©, and data D, we define:

the : what you believe before you see data
the : what you believe after you see data
the or : how probable is the data

under our prior and model
these three are probability distributions;

the : : function of © summarizing data

given model M, all evidence in data D relevant to parameters © is
contained in the likelihood function £(©)

this is not without controversy; see



REMEMBER THIS!!

given model M with parameters ©, and data D, we define:

— the : what you believe before you see data
— the : what you believe after you see data
— the or : how probable is the data

under our prior and model

the ; : function of © summarizing the data

also see:
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example: the mystery Bernoulli rv

e data D = {X1, Xo,..., X,} € {0,1}"
e model M: X; are generated i.i.d. from a Ber(#) distribution

; what is P[| M] for any i € [n]?

let ; what is P[H| M, D]7?



the Bernoulli likelihood function

e data D = {X1, Xo,..., X,} € {0,1}"
e model M: X; are generated i.i.d. from a Ber(#) distribution

: function of ® summarizing the data



log-likelihood, sufficient statistics, MLE




cromwell’s rule

how should we choose the prior?

the zeroth rule of Bayesian statistics
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from where do we get a prior?

e data D = {X1, Xo,..., X,} € {0,1}"
e model M: X; are generated i.i.d. from a Ber(#) distribution

option 1: from the ‘problem statement’

— eleven urns labeled by u € {0,1,2,...,10}, each containing ten balls
— urn u contains u balls and ©0u balls
— select urn u and draw n balls with replacement,

obtaining ng and nnp balls



from where do we get a prior

e data D = {X1, Xo,..., X,} € {0,1}"
e model M: X; are generated i.i.d. from a Ber(#) distribution

option 2: the principle
choose p(0|M) to be distribution with given M
we know 6 € [0, 1]



from where do we get the prior, take 2

e data D = {X1, Xo,..., X,} € {0,1}"
e model M: X; are generated i.i.d. from a Ber(#) distribution

option 3: easy updates via

- prior p(@) is said to be to likelihood p(D|6) if corresponding
posterior p(6|D) has same functional form as p(6)

- natural conjugate prior: p(#) has same functional form as p(D|0)

- conjugate prior family:
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the Beta distribution

Beta distribution
- [0 1], parameters: © — (o /)« (‘4 ones'+1,'# zeros'+1)

- pdf: p(x) oc x* (1 — x)F~1
- normalizing constant: B(i. ) =
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Beta-Bernoulli prior and updates

e data D ={Xq,X,...,X,} € {0,1}", contains N; ones and Ny zeros
e model M: X; are generated i.i.d. from a Ber(f) distribution

prior parameters: ( )

then via we get



the Beta distribution: getting familiar

Beta(a, 3) distribution

properties of I'(a)
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the Beta distribution: mean and mode

Beta(a, 3) distribution
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Beta-Bernoulli model: what should we report?

e data D = {X1,X,...,X,} € {0,1}", contains N; ones and Ny zeros
e model M: X; are generated i.i.d. from a Ber(#) distribution
e prior: posterior:
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decision theory
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Beta-Bernoulli model: posterior mean

e data D = {Xl,XQ,

Xn} €{0,1}", contains N; ones and Ny zeros
e model M: X; are generated i.i.d. from a Ber(#) distribution
e prior:

posterior: p(0|D) ~ Beta(a + Ny, 5 + Np)
posterior mean:
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Beta-Bernoulli model: posterior mode (

L

e data D = {X1,X,...,X,} € {0,1}", contains N; ones and Ny zeros
e model M: X; are generated i.i.d. from a Ber(#) distribution
e prior: posterior: p(6|D) ~ Beta(a+ Ny, 5+ Nb)

posterior mode: maxgcpo,1) (0], B, No, N1) =
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Beta-Bernoulli model: posterior prediction (

e data D = {X1,X,...,X,} € {0,1}", contains N; ones and Ny zeros
e model M: X; are generated i.i.d. from a Ber(#) distribution
e prior: posterior: p(6|D) ~ Beta(a+ Ny, 5+ Nb)

posterior prediction: [P[X = 1|D] =
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