
ORIE 4742 - Info Theory and Bayesian ML

Bayesian Decision Making

May 7, 2020

Sid Banerjee, ORIE, Cornell

decision theory in a nutshell

Bayesian decision theory in learning

given prior F on ✓, choose ‘action’ ✓̂ to minimize loss function EF [L(✓, ✓̂)]

examples

- L0 loss: L(✓, ✓̂) = 1{✓ 6=✓̂) ✓̂L0 = mode of F

- L1 loss: L(✓, ✓̂) = ||✓ � ✓̂||1) ✓̂L1 = median of ✓ under F

- L2 loss: L(✓, ✓̂) = ||✓ � ✓̂||2) ✓̂L2 = EF [✓]

decision theory in ‘decision-making’

given prior F on X , choose ‘action’ a 2 A to minimize loss, i.e.

a
⇤
= argmin

a2A
EX⇠F [L(a,X)]

example: Bayesian optimization

next, we play a game

Courtesy: Paat Rusmevichientong

(note: this is a variant of a game called Nim; see Youtube video)

talking of playing games (in memorium)

for more on such games, see winning ways for mathematical plays

analyzing the game

divide game into rounds:

– in each round, you go first followed by COMPUTER

– In k
th

round, computer picks Xk ⇠ Unif {1, 2} toothpicks

observations

• if the game starts with 1 or 2 toothpicks, then we win!

(if game starts with 0 toothpicks, assume we lose.)

• suppose after k � 1 rounds, game has Sk � 3 toothpicks left, and let

Sk+1 be number of toothpicks left when we play next:

- if we pick 1 match, then Sk+1 = Sk � 1� Xk

- if we pick 2 match, then Sk+1 = Sk � 2� Xk

to ‘solve’ this game, we use dynamic programming.

analyzing the game

divide game into rounds:

– in each round, you go first followed by COMPUTER

– In k
th

round, computer picks Xk ⇠ Unif {1, 2} toothpicks

observations

• if the game starts with 1 or 2 toothpicks, then we win!

(if game starts with 0 toothpicks, assume we lose.)

• suppose after k � 1 rounds, game has Sk � 3 toothpicks left, and let

Sk+1 be number of toothpicks left when we play next:

- if we pick 1 match, then Sk+1 = Sk � 1� Xk

- if we pick 2 match, then Sk+1 = Sk � 2� Xk

to ‘solve’ this game, we use dynamic programming.

analyzing the game

divide game into rounds:

– in each round, you go first followed by COMPUTER

– In k
th

round, computer picks Xk ⇠ Unif {1, 2} toothpicks

observations

• if the game starts with 1 or 2 toothpicks, then we win!

(if game starts with 0 toothpicks, assume we lose.)

• suppose after k � 1 rounds, game has Sk � 3 toothpicks left, and let

Sk+1 be number of toothpicks left when we play next:

- if we pick 1 match, then Sk+1 = Sk � 1� Xk

- if we pick 2 match, then Sk+1 = Sk � 2� Xk

to ‘solve’ this game, we use dynamic programming.

analyzing the game

divide game into rounds:

– in each round, you go first followed by COMPUTER

– In k
th

round, computer picks Xk ⇠ Unif {1, 2} toothpicks

observations

• if the game starts with 1 or 2 toothpicks, then we win!

(if game starts with 0 toothpicks, assume we lose.)

• suppose after k � 1 rounds, game has Sk � 3 toothpicks left, and let

Sk+1 be number of toothpicks left when we play next:

- if we pick 1 match, then Sk+1 = Sk � 1� Xk

- if we pick 2 match, then Sk+1 = Sk � 2� Xk

to ‘solve’ this game, we use dynamic programming.

analyzing the game

• if after k � 1 rounds, game has Sk � 3 toothpicks, and Sk+1 is number

of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk � 1� Xk

- If we pick 2 match, then Sk+1 = Sk � 2� Xk

(where Xk ⇠ Unif {1, 2})

let V (x) = maxE[Reward] if round starts with x toothpicks

- V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max

n
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

o

= max

n
E[V (3� 1� X)],E[V (3� 2� X)]

o

= max

n⇣
V (1)+V (0)

2

⌘
,
⇣
V (0)+V (�1)

2

⌘o
= 10

analyzing the game

• if after k � 1 rounds, game has Sk � 3 toothpicks, and Sk+1 is number

of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk � 1� Xk

- If we pick 2 match, then Sk+1 = Sk � 2� Xk

(where Xk ⇠ Unif {1, 2})

let V (x) = maxE[Reward] if round starts with x toothpicks

- V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max

n
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

o

= max

n
E[V (3� 1� X)],E[V (3� 2� X)]

o

= max

n⇣
V (1)+V (0)

2

⌘
,
⇣
V (0)+V (�1)

2

⌘o
= 10

analyzing the game

• if after k � 1 rounds, game has Sk � 3 toothpicks, and Sk+1 is number

of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk � 1� Xk

- If we pick 2 match, then Sk+1 = Sk � 2� Xk

(where Xk ⇠ Unif {1, 2})

let V (x) = maxE[Reward] if round starts with x toothpicks

- V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max

n
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

o

= max

n
E[V (3� 1� X)],E[V (3� 2� X)]

o

= max

n⇣
V (1)+V (0)

2

⌘
,
⇣
V (0)+V (�1)

2

⌘o
= 10

analyzing the game

• if after k � 1 rounds, game has Sk � 3 toothpicks, and Sk+1 is number

of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk � 1� Xk

- If we pick 2 match, then Sk+1 = Sk � 2� Xk

(where Xk ⇠ Unif {1, 2})

let V (x) = maxE[Reward] if round starts with x toothpicks

- V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max

n
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

o

= max

n
E[V (3� 1� X)],E[V (3� 2� X)]

o

= max

n⇣
V (1)+V (0)

2

⌘
,
⇣
V (0)+V (�1)

2

⌘o
= 10

analyzing the game

• if after k � 1 rounds, game has Sk � 3 toothpicks, and Sk+1 is number

of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk � 1� Xk

- If we pick 2 match, then Sk+1 = Sk � 2� Xk

(where Xk ⇠ Unif {1, 2})

let V (x) = maxE[Reward] if round starts with x toothpicks

- V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max

n
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

o

= max

n
E[V (3� 1� X)],E[V (3� 2� X)]

o

= max

n⇣
V (1)+V (0)

2

⌘
,
⇣
V (0)+V (�1)

2

⌘o
= 10

analyzing the game

• if after k � 1 rounds, game has Sk � 3 toothpicks, and Sk+1 is number

of toothpicks when we play next:

- If we pick 1 match, then Sk+1 = Sk � 1� Xk

- If we pick 2 match, then Sk+1 = Sk � 2� Xk

(where Xk ⇠ Unif {1, 2})

let V (x) = maxE[Reward] if round starts with x toothpicks

- V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

- V (3) = maxE[Reward] if round starts with 3 toothpicks

= max

n
E[R if we pick 1 of 3],E[R if we pick 2 of 3]

o

= max

n
E[V (3� 1� X)],E[V (3� 2� X)]

o

= max

n⇣
V (1)+V (0)

2

⌘
,
⇣
V (0)+V (�1)

2

⌘o
= 10

analyzing the game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

• V (3) = max
�
0.5

�
V (1) + V (0)

�
, 0.5

�
V (0) + V (�1)

�
= 10

• V (4) = max
�
0.5

�
V (2) + V (1)

�
, 0.5

�
V (1) + V (0)

�
= 20

• V (5) = max
�
0.5

�
V (3) + V (2)

�
, 0.5

�
V (2) + V (1)

�
= 20

• V (6) = max
�
0.5

�
V (4) + V (3)

�
, 0.5

�
V (3) + V (2)

�
= 15

• V (7) = max
�
0.5

�
V (5) + V (4)

�
, 0.5

�
V (4) + V (3)

�
= 20

• V (8) = max
�
0.5

�
V (6) + V (5)

�
, 0.5

�
V (5) + V (4)

�
= 20

• V (9) = max
�
0.5

�
V (7) + V (6)

�
, 0.5

�
V (6) + V (5)

�
= 17.5

• V (10) = max
�
0.5

�
V (8) + V (7)

�
, 0.5

�
V (7) + V (6)

�
= 20

optimal policy: move to nearest multiple of 3

we always win if x 6= 0 mod (3)

analyzing the game

V (x) = maxE[Reward] if round starts with x toothpicks

• V (�1) = V (0) = 0, V (1) = V (2) = 20. Want to find V (10)

• V (3) = max
�
0.5

�
V (1) + V (0)

�
, 0.5

�
V (0) + V (�1)

�
= 10

• V (4) = max
�
0.5

�
V (2) + V (1)

�
, 0.5

�
V (1) + V (0)

�
= 20

• V (5) = max
�
0.5

�
V (3) + V (2)

�
, 0.5

�
V (2) + V (1)

�
= 20

• V (6) = max
�
0.5

�
V (4) + V (3)

�
, 0.5

�
V (3) + V (2)

�
= 15

• V (7) = max
�
0.5

�
V (5) + V (4)

�
, 0.5

�
V (4) + V (3)

�
= 20

• V (8) = max
�
0.5

�
V (6) + V (5)

�
, 0.5

�
V (5) + V (4)

�
= 20

• V (9) = max
�
0.5

�
V (7) + V (6)

�
, 0.5

�
V (6) + V (5)

�
= 17.5

• V (10) = max
�
0.5

�
V (8) + V (7)

�
, 0.5

�
V (7) + V (6)

�
= 20

optimal policy: move to nearest multiple of 3

we always win if x 6= 0 mod (3)

sequential decision making

Markov decision process (MDP)

general paradigm for sequential decision making

problem: maxa:“Actions” EX [f (X1, a1,X2, a2, . . . ,XT , aT)]

main concepts

• state: S - summary of history

• value function: V (·) - ‘value-to-go’ for given state

• Bellman equation (or dynamic program equation):

V (St) = maxat :actions E
h
Rt(St , at) + V

⇣
St+1

�
St , at

�⌘i

optimal policy: pick any at that is a maximizer of above eqn

Markov chain vs. Markov decision process

(finite horizon) MDP

sequential decision making: max
a:“Actions”

EX [f (a,X)]

main concepts

• horizon: T - discrete ‘decision periods’ t = {1, 2, . . . ,T}

• state: st 2 St - concise summary of history

• action: at 2 A(st) - allowed set actions in each period

• randomness/disturbance: Xt - determines state transition probability

p(st+1|st , at) (or st+1 = f (st , at ,Xt))

• Reward: Rt(st , at ,Xt) (or Rt(st+1|st , at))

(finite horizon) MDP

sequential decision making: max
a:“Actions”

EX [f (a,X)]

main concepts

• horizon: T - discrete ‘decision periods’ t = {1, 2, . . . ,T}
• state: st 2 St - concise summary of history

• action: at 2 A(st) - allowed set actions in each period

• randomness/disturbance: Xt - determines state transition probability

p(st+1|st , at) (or st+1 = f (st , at ,Xt))

• Reward: Rt(st , at ,Xt) (or Rt(st+1|st , at))

(finite horizon) MDP

sequential decision making: max
a:“Actions”

EX [f (a,X)]

main concepts

• horizon: T - discrete ‘decision periods’ t = {1, 2, . . . ,T}
• state: st 2 St - concise summary of history

• action: at 2 A(st) - allowed set actions in each period

• randomness/disturbance: Xt - determines state transition probability

p(st+1|st , at) (or st+1 = f (st , at ,Xt))

• Reward: Rt(st , at ,Xt) (or Rt(st+1|st , at))

(finite horizon) MDP

sequential decision making: max
a:“Actions”

EX [f (a,X)]

main concepts

• horizon: T - discrete ‘decision periods’ t = {1, 2, . . . ,T}
• state: st 2 St - concise summary of history

• action: at 2 A(st) - allowed set actions in each period

• randomness/disturbance: Xt - determines state transition probability

p(st+1|st , at) (or st+1 = f (st , at ,Xt))

• Reward: Rt(st , at ,Xt) (or Rt(st+1|st , at))

(finite horizon) MDP

sequential decision making: max
a:“Actions”

EX [f (a,X)]

main concepts

• horizon: T - discrete ‘decision periods’ t = {1, 2, . . . ,T}
• state: st 2 St - concise summary of history

• action: at 2 A(st) - allowed set actions in each period

• randomness/disturbance: Xt - determines state transition probability

p(st+1|st , at) (or st+1 = f (st , at ,Xt))

• Reward: Rt(st , at ,Xt) (or Rt(st+1|st , at))

‘solving’ an MDP

dynamic programming

• value function: Vt(s) , maximum expected expected reward over

periods {t, t + 1, . . . ,T} starting from state s

• terminal conditions VT (s) for all s

• Bellman equation (or dynamic program equation):

Vt(St) = maxat :actions E
h
Rt(St , at) + Vt+1

⇣
St+1

�
St , at

�⌘i

optimal policy: pick any at that is a maximizer of above eqn

example: distributing food to soup kitchens

• mobile food pantry has C meals to distribute between H soup kitchens

• kitchen i has demand Di ⇠ Fi

• can choose to give Xi � 0 units of food

• objective: maximize sum of log fill ratios
P

H

i=1
log

⇣
Xi

Di

⌘

example: distributing food to soup kitchens

example: distributing food to soup kitchens

• mobile food pantry has Cj cans of item j 2 {1, 2, . . . , d} to distribute

between H soup kitchens

• kitchen i has demand Dij ⇠ Fi for item j

• can choose to give Xij � 0 units of each item

• objective: maximize product of utilities
Q

H

i=1

⇣
Ui (

P
j
vij

Xij

Dij

⌘

‘solving’ real MDPs

• exact solution via DP

• approximate methods (Thompson sampling)

• iterative methods (value/policy iteration, Q learning)

example: the multi-armed bandit problem

• K actions, H horizon

• action a 2 [K] has reward R(a) = Ber(✓a), with unknown ✓

• aim: maximize
P

H

t=1
R(At)

example: the multi-armed bandit problem

