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decision theory in a nutshell

Bayesian decision theory in learning

given prior F on 6, choose ‘action’ 0 to

examples

given prior F on X, choose ‘action’ a € A to minimize loss, i.e.



example: Bayesian optimization
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next, we play a game [s\od\os‘m_ Sevian »‘ [\S'm\l

Setup: A pile of 10 toothpicks IRRRREEER

You will be playing against an oblivious random adversary (called

Comeputer).

A Sequence of Events in Each Iteration:

—You start first. You can take either | or 2 toothpicks from the
pile. Ao computer

— After you make the decision, # will flip a random fair coin. If the
coin lands HEAD, the Computer will remove | toothpick from

the pile. Otherwise, the Computer will remove 2 toothpicks.
The game proceeds until all toothpicks are removed from the pile.
If you end up holding the last toothpick, you win $20. Otherwise,
you get nothing.

Courtesy: Paat Rusmevichientong

: this is a variant of a game called : )




talking of playing games (in memorium)

for more on such games, see



analyzing the game (sgcku{:a[ decision mlaakas

divide game into rounds:

— in each round, you go first followed by COMPUTER
—In k" round, computer picks Xi ~ Unif{1,2} toothpicks
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analyzing the game

divide game into :
— in each round, you go first followed by COMPUTER
—In k" round, computer picks Xi ~ Unif{1,2} toothpicks

observations
e if the game starts with 1 or 2 toothpicks, then we win!
(if game starts with 0 toothpicks, assume we lose.)

e suppose after k — 1 rounds, game has Sy > 3 toothpicks left, and let
Sk+1 be number of toothpicks left when we play next:
- if we pick 1 match, then Sx11 = Sk — 1 — Xk
- if we pick 2 match, then Sx11 = Sk — 2 — Xk

to ‘solve’ this game, we use



analyzing the game

o if after k — 1 rounds, game has Sy > 3 toothpicks, and Si1 is number
of toothpicks when we play next:
- If we pick 1 match, then Sgi1 = S — 1 — X
- If we pick 2 match, then Sx11 = S — 2 — X
(where Xy ~ Unif{1,2})

let V(x) = if round starts with x toothpicks
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analyzing the game

o if after k — 1 rounds, game has Sy > 3 toothpicks, and Si1 is number
of toothpicks when we play next:
- If we pick 1 match, then Sgi1 = S — 1 — X
- If we pick 2 match, then Sx11 = S — 2 — X
(where Xy ~ Unif{1,2})

let V(x) = if round starts with x toothpicks

V(=1) = V(0) = 0, V(1) = V(2) = 20. Want to find V/(10)
- V(3) = max E[Reward] if round starts with 3 toothpicks
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analyzing the game

o if after k — 1 rounds, game has Sy > 3 toothpicks, and Si1 is number
of toothpicks when we play next:
- If we pick 1 match, then Sgi1 = S — 1 — X
- If we pick 2 match, then Sx11 = S — 2 — X

(where Xy ~ Unif{1,2})

let V(x) = if round starts with x toothpicks
V(-1) = V(0) =0, V(1) = V(2) = 20. Want to find V/(10)
- V(3) = max E[Reward] if round starts with 3 toothpicks

max {E[R if we pick 1 of 3], E[R if we pick 2 of 3]}
= max {E[V(3 —1-X),E[V(3-2— X)]}
= max { (MY 1
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V(x) = max[E[Reward] if round starts with x toothpicks

o V
o V
o V
o V
o V
o V
o V
o V

5}
€
<
o0
%)

<

e
o0

£
N

o
©
c
®



5}
€
<
o0
%)

<

e
o0

£
N

o
©
c
®

V(x) = max[E[Reward] if round starts with x toothpicks
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optimal policy: move to nearest multiple of 3



sequential decision making

Markov decision process (MDP)
general paradigm for sequential decision making
. MaXj: “Actions” IEX[f()<1> ai, X2> ag,..., XT7 aT)]

main concepts

° : S - summary of history
o : V(:) - ‘value-to-go’ for given state
° (or dynamic program equation):

. pick any a; that is a maximizer of above eqn



Markov chain vs. Markov decision process
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(finite horizon) MDP

sequential decision making: max Ex[f(a, X)]
a: "Actions”

main concepts

. . T - discrete ‘decision periods’ t = {1,2,..., T}
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(finite horizon) MDP

sequential decision making: max Ex[f(a, X)]
a: "Actions”

main concepts

° . T - discrete ‘decision periods’ t = {1,2,..., T}
° : s+ € St - concise summary of history

o . a; € A(s¢) - allowed set actions in each period

° . X: - determines

p(st+1lst, ar) (or sev1 = f(st, ae, Xt))
© Re(st; ar, Xi) (or Re(se+1lst, ar))



‘solving’ an MDP

dynamic programming

o : V4(s) £ maximum expected expected reward over
periods {t,t+ 1,..., T} starting from state s

° for all s

° (or dynamic program equation):

. pick any a; that is a maximizer of above eqn



example: distributing food to soup kitchens

e mobile food pantry has C meals to distribute between H soup kitchens
e kitchen i has demand D; ~ F;
e can choose to give X; > 0 units of food . fill tng
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° : maximize sum of log fill ratios Z, 1 log (( )



example: distributing food to soup kitchens



example: distributing food to soup kitchens Cuvse 0| dirensonlly

e mobile food pantry has C; cans of item j € {1,2,...,d} to distribute
between H soup kitchens

e kitchen i has demand Dj; ~ F; for item j

e can choose to give Xj; > 0 units of each item
Xi

. : maximize product of utilities [, <U,-(ZJ- v,JD—f»
ij

= % [03 L Vs W‘i;b"%>



‘solving’ real MDPs

e exact solution via DP
e approximate methods (Thompson sampling)

e iterative methods (value/policy iteration, Q learning)



example: the multi-armed bandit problem

e K actions, H horizon
e action a € [K] has reward R(a) = Ber(6,), with

e aim:
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example: the multi-armed bandit problem (B%ww W,LQ\\



