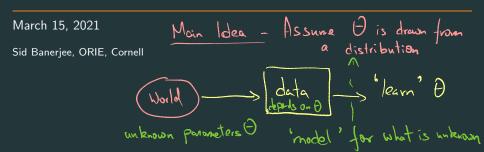
ORIE 4742 - Info Theory and Bayesian ML

Chapter 6: Intro to Bayesian Statistics



sian hasics

marginals and conditionals

let X and Y be discrete rvs taking values in \mathbb{N} . denote the joint pmf:

$$p_{XY}(x,y) = \mathbb{P}[X = x, Y = y]$$

marginalization: computing individual pmfs from joint pmfs as

$$p_X(x) = \sum_{y \in \mathbb{N}} p_{XY}(x, y)$$
 $p_Y(y) = \sum_{x \in \mathbb{N}} p_{XY}(x, y)$

conditioning: pmf of X given Y = y (with $p_Y(y) > 0$) defined as:

omf of
$$X$$
 given $Y = y$ (with $p_Y(y) > 0$) defined as:
$$\mathbb{P}[X = x | Y = y] \triangleq p_{X|Y}(x|y) = \frac{p_{XY}(x,y)}{p_Y(y)} \stackrel{\text{defined as:}}{\triangleright} \text{marginal}$$

more generally, can define $\mathbb{P}[X \in \mathcal{A}|Y \in \mathcal{B}]$ for sets $\mathcal{A}, \mathcal{B} \in \mathbb{N}$ see also this visual demonstration

the basic 'rules' of Bayesian inference

let X and Y be discrete rvs taking values in \mathbb{N} , with joint pmf p(x,y)

product rule
$$h(x,y) = h(x) + h(y(x))$$
, $H(x,y) = H(y) + H(x(y))$
for $x, y \in \mathbb{N}$, we have: $p_{XY}(x,y) = p_X(x)p_{Y|X}(y|x) = p_Y(y)p_{X|Y}(x|y)$
sum rule $H(x) = H(y) + \sum_y p(y) H(x(y) = y)$
for $x \in \mathbb{N}$, we have: $p_X(x) = \sum_{y \in \mathbb{N}} p_{X|Y}(x|y)p_Y(y)$

and most importantly!

Bayes rule
$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{\sum_{x \in \mathbb{N}} p_{Y|X}(y|x)p_X(x)}$$
 which is taken at the states of the states o

see also this video for an intuitive take on Bayes rule

fundamental principle of Bayesian statistics

- assume the world arises via an underlying generative model ${\cal M}$
- use random variables to model all unknown parameters heta
- incorporate all that is known by conditioning on data D
- use Bayes rule to update prior beliefs into posterior beliefs

$$p(\theta|D,\mathcal{M}) \propto p(\theta|\mathcal{M})p(D|\theta,\mathcal{M})$$

pros and cons

in praise of Bayes

- conceptually simple and easy to interpret
- works well with small sample sizes and overparametrized models
- can handle all questions of interest: no need for different estimators, hypothesis testing, etc.

why isn't everybody Bayesian

- they need priors (subjectivity...) (but all methods are subjective...)
- they may be more computationally expensive: computing normalization constant and expectations, and updating priors, may be difficult

the likelihood principle

```
(often hidden)
given model \mathcal{M} with parameters \Theta, and data D, we define:
                                                                                  Soth and
    the prior p(\Theta|\mathcal{M}): what you believe before you see data
                                                                                  distrib"
  - the posterior p(\Theta|D,\mathcal{M}): what you believe after you see data
  – the marginal likelihood or evidence p(D|\mathcal{M}): how probable is the data
     under our prior and model
     those three are probability distributions; the next is not
     the likelihood: \mathcal{L}(\Theta) \triangleq p(D|\mathcal{M}, \Theta): function of \Theta summarizing data
the likelihood principle (main axiomatic basis for Bayesian ML)
 given model \mathcal{M}, all evidence in data D relevant to parameters \Theta is
 contained in the likelihood function \mathcal{L}(\Theta)
```

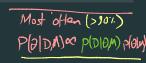
this is not without controversy; see Wikipedia article

REMEMBER THIS!!

given model ${\mathcal M}$ with parameters Θ , and data D, we define:

- the prior $p(\Theta|\mathcal{M})$: what you believe before you see data
- the posterior $p(\Theta|D,\mathcal{M})$: what you believe after you see data
- the marginal likelihood or evidence $p(D|\mathcal{M})$: how probable is the data under our prior and model
- the likelihood: $\mathcal{L}(\Theta) \triangleq p(D|\mathcal{M}, \Theta)$: function of Θ summarizing the data

also see: Sir David Spiegelhalter on Bayes vs. Fisher



```
Notes
· likelihood, evidence are not distributions (LO) is just a for of \theta which summarizes the data)
    P(D), P(DID) are distributions over Q
· L(A) is different for discrete vs continuous parameters ()
```

- I(D discrete, L(DD) = P(DD) (pmf) If θ contin, $d(\theta|D) = f(\theta|D)(Pdf)$

· The evidence is different for discrete us continuous D

· If O discrote, evidence = P(D)M) O continuous, evidence = f(DIM)

example: the mystery Bernoulli rv

- data $D=\{X_1,X_2,\ldots,X_n\}\in\{0,1\}^n$
- model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

fix
$$\theta$$
; what is $\mathbb{P}[D|\mathcal{M}]$ for any $i \in [n]$? Let $N_i = \# \circ f$ is in D $N_i + N_o = n$

$$\mathcal{L}(\theta) = \mathcal{P}\left(\mathcal{D}(M, \theta) = \mathcal{P}\left[X_{1} = x_{1}, X_{2} = x_{2}, \dots, X_{n} = x_{n} \middle| M, \theta\right] = \mathcal{O}_{N_{1}}^{N_{1}} \left(1 - \theta\right)^{N_{0}} \left(1 - \theta\right)^{N_{0}} \left(1 - \theta\right)^{N_{0}}$$

let $\emptyset = \#$ of '1's in $\{X_1, X_2, \dots, X_n\}$; what is $\mathbb{P}[H|\mathcal{M}, \theta]$?

$$P[N_i = k | \theta_i M] = \binom{n}{k} \theta^k (i - \theta)^{n-k}$$

the Bernoulli likelihood function

- ullet data $D=\{X_1,X_2,\ldots,X_n\}\in\{0,1\}^n$
- model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

likelihood: $\mathcal{L}(\Theta) \triangleq p(D|\mathcal{M}, \theta)$: function of Θ summarizing the data

- Note -
$$L(\theta)$$
 is NOT a distribution, ie.

$$\int_{0}^{1} L(\theta) d\theta + 1$$

log-likelihood, sufficient statistics, MLE

*
$$L(\theta) = \log L(\theta) = N_1 \log \theta + N_2 \log (1-\theta)$$
 for Bernoulli

$$N_{i}(D)$$
, $N_{0}(D)$

• MLE - max likelihood estimator

ay max $L(\theta) = a_{gnax} L(\theta) = \frac{N_{i}}{N_{i} + N_{0}}$
 $\theta \in [0,1]$
 $\theta \in [0,1]$

cromwell's rule

how should we choose the prior?

the zeroth rule of Bayesian statistics

never set $p(heta|\mathcal{M})=0$ or $p(heta|\mathcal{M})=1$ for any heta

also see:

- Jacob Bronowski on Cromwell's Rule and the scientific method
- Richard Feynman on the scientific method (at Cornell!)

from where do we get a prior?

- data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$
- model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

option 1: from the 'problem statement'

Mackay example 2.6

- eleven urns labeled by $u \in \{0,1,2,\ldots,10\}$, each containing ten balls
- urn u contains u red balls and 10 u blue balls
- select urn u uniformly at random and draw n balls with replacement, obtaining n_R red and $n n_R$ blue balls

$$\theta = \frac{i}{10}$$
 with prob $\frac{1}{11}$ for each $i \in \{0,1,...,10\}$

from where do we get a prior

- data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$
- ullet model \mathcal{M} : X_i are generated i.i.d. from a Ber(heta) distribution

option 2: the maximum entropy principle

choose $p(\theta|\mathcal{M})$ to be distribution with maximum entropy given \mathcal{M} we know $\theta \in [0,1]$

Eg-If we know
$$\Theta \in [0,1]$$
, then one choice of prior $=$ Max Ent $([0,1])$

$$= Unif ([0,1])$$
Eg-If $\Theta \in \mathbb{N}_+$, $E[\partial]_{=M} \Rightarrow Geom(1/M)$

from where do we get the prior, take 2

- data $D = \{X_1, X_2, \dots, X_n\} \in \{0, 1\}^n$
- model \mathcal{M} : X_i are generated i.i.d. from a $Ber(\theta)$ distribution

option 3: easy updates via conjugate priors

- prior $p(\theta)$ is said to be conjugate to likelihood $p(D|\theta)$ if corresponding posterior $p(\theta|D)$ has same functional form as $p(\theta)$
- natural conjugate prior: $p(\theta)$ has same functional form as $p(D|\theta)$
- conjugate prior family: closed under Bayesian updating

the Beta distribution

Beta distribution

- $\times \in [0,1]$, parameters: $\Theta = (\alpha,\beta) \in \mathbb{R}^+$ ('# ones'+1,'# zeros'+1)
- pdf: $p(x) \propto x^{\alpha-1}(1-x)^{\beta-1}$ Some form as the Bernoulli permulting constant: $\frac{1}{1-\frac{\Gamma(\alpha+\beta)}{2}}$ (the lihood)
- normalizing constant: $\frac{1}{B(\alpha,\beta)} = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$

