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“probability theory is common sense reduced to calculation”




given an equilateral triangle inscribed in a circle, and a :
what is the probability the chord is longer than the side of the triangle?




given an equilateral triangle inscribed in a circle, and a random chord,
what is the probability the chord is longer than the side of the triangle?
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Bertrand’s problem
given an equilateral triangle inscribed in a circle, and a random chord,
what is the probability the chord is longer than the side of the triangle?




given an equilateral triangle inscribed in a circle, and a random chord,
what is the probability the chord is longer than the side of the triangle?

the moral (for this course. .. and for life)

be very precise about defining experiments/random variables/distributions

also see



the essentials

Bishop: chapter 1, sections 1.2 - 1.2.4
Mackay: chapter 2 (less formal, but much more fun!)

things you must know and understand

random variables (rv) and (cdf)

conditional probabilities and

- and of random variables
5 and events
- : union bound, Jensen, Markov/Chebyshev

- common rvs ( )



random variables and cdf




sample space, random variable

random experiment: outcome cannot be predicted in advance.

. the set of all possible outcomes of the experiment
: any function from Q — R (random vector:Q — R9)

example: flip two coins, and let X = # of heads (IP[L\@.A;&: L»\



cumulative distribution function

always try to think of probability and rvs through the cdf

for any rv X (discrete or continuous), its is
defined by its

F(x) =

using the cdf we can compute probabilities

Pla< X < b] =



visualizing a cdf

The plot of a cdf obeys 3 essential rules +

Example: consider an rv € [—2,5] with a jumps at 1 and 2
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discrete random variables

for a discrete random variable taking values in N, another
characterization is its p(+)

p(x) = P[X = x]
e any pmf p(x) has the following properties:

p(x) € [0,1]Vx € N , Zp(x) =3
xeN

e the pmf p(-) is related to the cdf F(-) as



continuous random variables

for a continuous random variable taking values in R, another
characterization is its ()

Pla< X < b] =

e any pdf f(x) has the following properties:

f(x)>0VxeR ) / f(x)dx =1
o It is not true that f(x) = P[X = x]. In fact, for any x,

P[X = x| =



continuous random variables

thus, for continuous rv X with pdf f(-) and cdf F(-), we have

b
Pla < X < b] = F(b) — F(a) = / f(x)dx

now we can go from one function to the other as



expectations and independence




expected value (mean, average)

let X be a random variable, and g(-) be any real-valued function
e If X is a discrete rv with Q = Z and pmf p(-), then

E[X] =
Elg(X)] =

e If X is a continuous rv with Q = R and pdf f(-), then

E[X] =

Elg(X)] =



variance and standard deviation

C Numbay
e Definition: Var(X) = o(X) =

)
e (More useful formula for computir:ag variance)

Var(X) =
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what do we mean by “random variables X and Y are independent”?
(denoted as X L Y; similarly, X )L Y for ‘not independent’)

intuitive definition:

formal definition:

e One measure of independence between rv is their covariance

Cov(X,Y) = (formal definition)

(for computing)



independence and covariance

how are independence and covariance related?

e X and Y are independent, then they are

in notation:

e however, uncorrelated rvs can be dependent

in notation:

e Cov(X,Y)=0= X 1L Y only for
(this though is confusing; see )



linearity of expectation

for

E[aX + bY] = aE[X] + bE[Y]

note 1: I' (in particular, does not need independence)



linearity of expectation

for

E[aX + bY] = aE[X] + bE[Y]
note 1: I' (in particular, does not need independence)
note 2:

for general X, Y
Var(aX + bY) =
when

Var(aX + bY) =



using linearity of expectation (Qwe\b pes Fra\n ‘Or\-\

the TAs get lazy and distribute graded assignments among n students
uniformly at random. On average, how many students get their own hw?



using linearity of expectation

the TAs get lazy and distribute graded assignments among n students
uniformly at random. On average, how many students get their own hw?

—Q I3 T,
student i gets her hw] ( ) ned iwm

N = number of students who get their own hw = 221 Xi
then we have:

Let X,':]l[

E[N] = E[>_ X]]
i=1
= E[X]]
i=1
:ZH:IP[X,-:u:zn:i:l
i=1 1

=



useful probability inequalities




inequality 1: The Union Bound

Let A1, Ao, ..., Ak be events. Then

P(A1UAU---UAL) < (P(A1) + P(A2) + -+ P(Ak))
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inequality 2: Jensen’s Inequality %EK —Ey\ll OH%}-—EADL

If X is a random variable and f is a convex functiorﬁ
E[f(X)] > FEIX]) -/

P ——

Proof sketch (plus way to remember)

¢

7 Cav\ubn

B \Cm\lax(

tf (z1) + (1= 1)f (22)

f(tey + (1 = t)as)




inequality 3: Markov and Chebyshev’s inequalities

Markov’s inequality
For any rv. X > 0 with mean E[X], and for any k > 0,

P[X > k] < E[X]

Chebyshev’s inequality
For any rv. X with mean E[X], finite variance o2 >0, and for any k > 0,

1
PIIX —E[X]| > ko] < 15
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conditioning and Bayes’ rule



marginals and conditionals

let X and Y be discrete rvs taking values in N. denote the

: computing individual pmfs from joint pmfs as
: pmf of X given Y =y (with py(y) > 0) defined as:

more generally, can define P[X € A|Y € B] for sets A, B € N
see also this



the basic ‘rules’ of Bayesian inference

let X and Y be discrete rvs taking values in N, with p(x,y)

for x,y € N, we have:

for x € N, we have:

and most importantly!

for any x,y € N, we have: /N/_\

I

P
gu«h (2}

T ol ohs

see also for an intuitive take on Bayes rule



Bayesian inference: example

24

We have three cards C1, C2, C3, with C1 having faces

- , C2
having faces -

; and C3 having faces

A card is randomly drawn and placed on a table — its upper face is
What is the colour of its lower face?
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Bayesian inference: example

Cl = - , C2= S : C3= = . A card is randomly

drawn, and has upper face . What is the colour of its lower face?

Let X € {C1, C2, C3} be the identity of drawn card, Y} € {b, r} be the
color of bottom face, and Y; € {b, r} be the color of top face. Then:

P[Ys = b|Y; = b] = PIX = C2|Y; = b] = L1Vt = blg[; i2£§’[>< = 2]

1 (1/3) -
(1/2) x (1/3) +1x (1/3) +0x (1/3) 2/3

always write down the probability of everything



Bayesian inference: example

The probability a woman at age 40 has breast cancer is 0.01. A

mammogram detects the disease 80% of the time, but also mis-detects the
disease in healthy patients 9.6% of the time.



Bayesian inference: example

The probability a woman at age 40 has breast cancer is 0.01. A

mammogram detects the disease 80% of the time, but also mis-detects the
disease in healthy patients 9.6% of the time.
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: dit: Micallef et al.
see also for more about the odds ratio credit: Vicaller et a
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fundamental principle of Bayesian statistics

assume the world arises via an underlying

use random variables to model all unknown

incorporate all that is known by conditioning on

use Bayes rule to



the likelihood principle

given model M with parameters ©, and data D, we define:

the : what you believe before you see data
the : what you believe after you see data
the or : how probable is the data

under our prior and model
these three are probability distributions;

the : . function of © summarizing data

given model M, all evidence in data D relevant to parameters © is
contained in the likelihood function £(©)

this is not without controversy; see



REMEMBER THIS!!

given model M with parameters ©, and data D, we define:

— the : what you believe before you see data
— the : what you believe after you see data
— the or : how probable is the data

under our prior and model

the ; : function of © summarizing the data

also see:



returning to vaccine trials

in a vaccine trial, scientists sequentially inject mice with a vaccine, and then
the pathogen, and record if the mice show symptoms

- they report they tested 102 mice, of which 5 developed symptoms
- it later emerges that they kept doing trials till they got 5 negative cases

(it just happened that it required 102 trials)
do you change your estimates based on this?



example: the mystery Bernoulli rv

e data D = {X1, Xo,..., X,} € {0,1}"
e model M: X; are generated i.i.d. from a Ber(#) distribution

; what is P[X;|M] for any i € [n]?

let ; what is P[H|M, D]?



the Bernoulli likelihood function

e data D = {X1, Xo,..., X,} € {0,1}"
e model M: X; are generated i.i.d. from a Ber(#) distribution

: function of ® summarizing the data



log-likelihood, sufficient statistics, MLE




quantifying information content




how much ‘information’ does a random variable have?




Mackay’s weighing puzzle
The weighing problem
OO

OOOOOOO O

You are given 12 balls, all equal in weight except for one
that is either heavier or lighter. (bm . ae {%7>
Design a strategy to determine
which is the odd ball

and whether it is heavier or lighter,
in as few uses of the balance as possible.




