ORIE 4742 - Info Theory and Bayesian ML

February 8, 2021

Semester: Spring 2021

- instructor: Sid Banerjee, sbanerjee@cornell.edu
- TA: Spencer Peters, sp2473@cornell.edu
- lectures: MW 11:25am-12:40pm, Mann 107
- Zoom link

https://cornell.zoom.us/j/93025504345 (pwd: Shannon)

- website

https://piazza.com/cornell/spring2021/orie4742

the fine print

- grading
 50% homeworks, 20% prelim, 25% project,
 5% participation
- homeworks

5-6 homeworks (on average 2 weeks for each)
teams of up to 3
submit single Jupyter notebook, with theory answers in Markdown
submissions on https://cmsx.cs.cornell.edu
4 late days across homeworks, lowest grade dropped

- prelim

in class, tentatively March 29 no final exam

- project

use techniques learned in class on problem of your choosing teams of up to 3, report due before finals

• Q1. given data, how can we learn how it was generated?

- Q1. given data, how can we learn how it was generated?
- Q2. how can we translate data and models into future decisions?

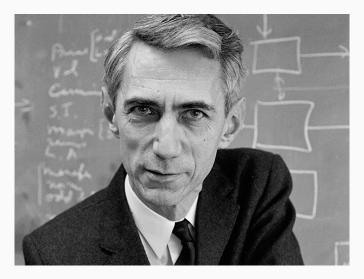
- Q1. given data, how can we learn how it was generated?
- Q2. how can we translate data and models into future decisions?
- Q3. what are the fundamental limits and design principles of data-driven learning and decision-making

- Q1. given data, how can we learn how it was generated?
- Q2. how can we translate data and models into future decisions?
- Q3. what are the fundamental limits and design principles of data-driven learning and decision-making

our approach in this course: probabilistic modeling

- bayesian inference: unified paradigm for learning and decision-making
- information theory: tool for designing and understanding data systems

problem: communicating over a noisy channel

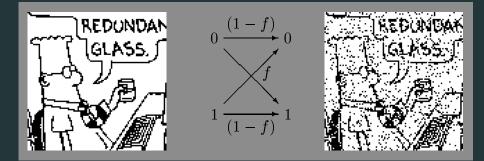


reading assignment: chapter 1 of Mackay

communicating over channels

the system's solution

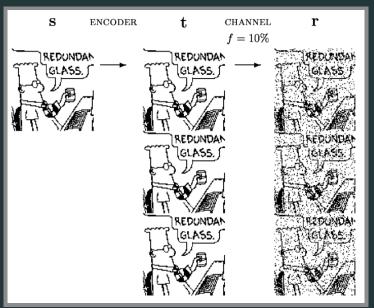
a toy model: the binary symmetric channel



credit: David Mackay

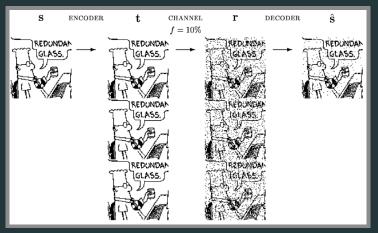
ideas for encoding

repetition codes: encoding



credit: David Mackav

repetition codes: decoding

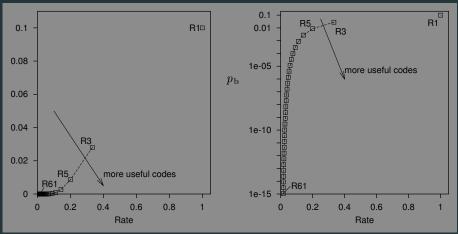


credit: David Mackay

repetition codes: inference

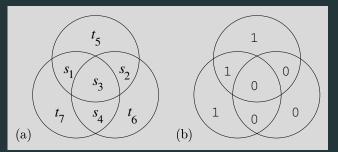
repetition codes: performance

repetition codes: the rate-error plot



credit: David Mackay

the (7,4) Hamming code



credit: David Mackay

the (7,4) Hamming code: performance

s	t	s	t	s	t	s	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

credit: David Mackay

the (7,4) Hamming code: performance

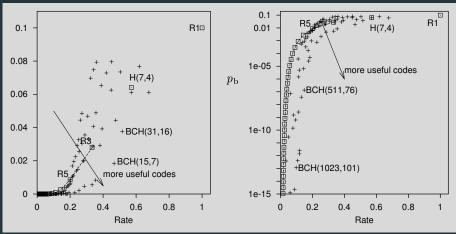
s	t	s	t	s	t	s	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

credit: David Mackay

distance between codewords

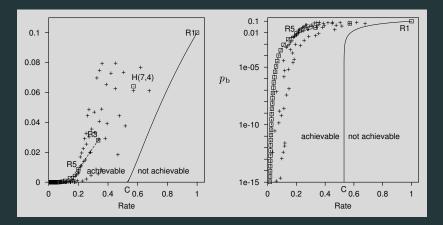
the minimal Hamming distance between any two correct codewords is 3

the rate-error plot



credit: David Mackay

Shannon's channel coding theorem



Theorem (Claude Shannon, 1948)

for any channel, 0-error communication is possible at a rate up to C > 0

noisy channel communication \leftrightarrow machine learning

"All models are wrong, but some are useful." George E. P. Box

redundancy \Rightarrow inference

Emma Woodh*use, hands*me, clever* and rich,*with a comfortab*e home an* happy di*position,*seemed to*unite som* of the b*st bless*ngs of e*istence;*and had *ived nea*ly twenty *ne year* in the*world w*th very*little *o distr*ss or vex*her. *he was*the yo*ngest *f the *wo dau*hters *f a most *ffect*onate* indu*gent *ather* and *ad, i* cons*quenc* of h*r si*ter'* mar*iage* bee* mis*ress*of h*s ho*se f*om a ver* ea*ly *eri*d. *er *oth*r h*d d*ed *oo *ong*ago*for*her to*ha*e *or* t*an*an*in*is*in*t *em*mb*an*e *f *er*ca*es*es* a*d*h*r*p*a*e*h*d*b*e* *u*p*i*d*b* *n*e*c*l*e*t*w*m*n*a* g**e**e**,**h**h** **l**n**i*l**s*r**o**a**o**e**i* a***c**n**S**e***y**s**d**s**a***r**e**n***

credit: David Mackay

$redundancy \Rightarrow inference$

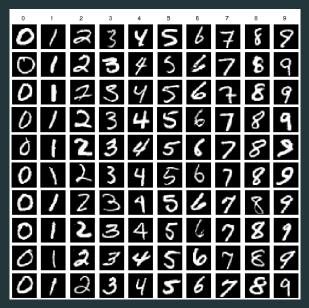
Emma Woodh*use, hands*me, clever* and rich,*with a comfortab*e home an* happy di*position,*seemed to*unite som* of the b*st bless*ngs of e*istence;*and had *ived nea*ly twenty *ne year* in the*world w*th very*little *o distr*ss or vex*her. *he was*the yo*ngest *f the *wo dau*hters *f a most *ffect*onate* indu*gent *ather* and *ad, i* cons*quenc* of h*r si*ter'* mar*iage* bee* mis*ress*of h*s ho*se f*om a ver* ea*ly *eri*d. *er *oth*r h*d d*ed *oo *ong*ago*for*her to*ha*e *or* t*an*an*in*is*in*t *em*mb*an*e *f *er*ca*es*es* a*d*h*r*p*a*e*h*d*b*e* *u*p*i*d*b* *n*e*c*l*e*t*w*m*n*a* g**e**e**,**h**h** **l**n**i*l**s*r**o**a**o**e**i* a***c**n**S**e***y**s**d**s**a***r**t***a***e***n***

credit: David Mackay

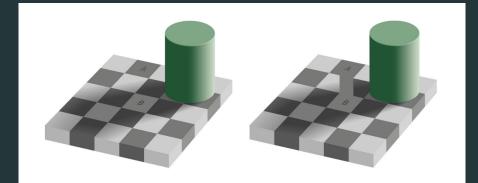
Emma Woodhouse, handsome, clever, and rich, with a comfortable home and happy disposition, seemed to unite some of the best blessings of existence; and had lived nearly twenty one years in the world with very little to distress or vex her. She was the youngest of the two daughters of a most affectionate, indulgent father; and had, in consequence of her sister's marriage, been mistress of his house from a very early period. Her mother had died too long ago for her to have more than an indistinct remembrance of her caresses; and her place had been supplied by an excellent woman as governess, who had fallen little short of a mother in affection. Sixteen years had Miss Taylor been in Mr Woodhouse's family, less as a governess than a friend, very

the noisy channel model in ML

noisy channels in ML



we are inherently bayesian



credit: quantamagazine.org, original image by Edward Adelson

"Tile A looks darker than tile B, though they are both the same shade (connecting the squares makes this clearer). The brain uses coloring of nearby tiles and location of the shadow to make inferences about the tile colors...lead to the perception that A and B are shaded differently."

- bayesian inference: unified paradigm for learning and decision-making
- information theory: tool for designing and understanding data systems
 - basic probability review, and introducing information measures
 - the source and channel coding theorems

- bayesian inference: unified paradigm for learning and decision-making
- information theory: tool for designing and understanding data systems
 - basic probability review, and introducing information measures
 - the source and channel coding theorems
 - bayesian inference: priors, bayesian update, model selection
 - bayesian classification and regression

- bayesian inference: unified paradigm for learning and decision-making
 information theory: tool for designing and understanding data systems
 - basic probability review, and introducing information measures
 - the source and channel coding theorems
 - bayesian inference: priors, bayesian update, model selection
 - bayesian classification and regression
 - complex models: gaussian processes, artificial neural networks
 - graphical models and markov random fields

- bayesian inference: unified paradigm for learning and decision-making
 information theory: tool for designing and understanding data systems
 - basic probability review, and introducing information measures
 - the source and channel coding theorems
 - bayesian inference: priors, bayesian update, model selection
 - bayesian classification and regression
 - complex models: gaussian processes, artificial neural networks
 - graphical models and markov random fields
 - approximate inference: MCMC

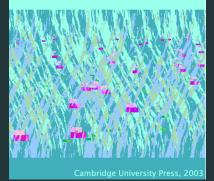
- bayesian inference: unified paradigm for learning and decision-making
 information theory: tool for designing and understanding data systems
 - - basic probability review, and introducing information measures
 - the source and channel coding theorems
 - bayesian inference: priors, bayesian update, model selection
 - bayesian classification and regression
 - complex models: gaussian processes, artificial neural networks
 - graphical models and markov random fields
 - approximate inference: MCMC
 - model-based decision-making: bayesian optimization, causal inference, sequential decision-making and reinforcement learning

aids in learning

the following books are excellent references for most topics in the course

David J.C. MacKay

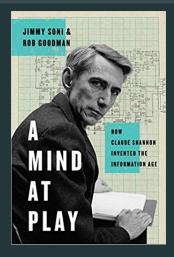
Information Theory, Inference, and Learning Algorithms

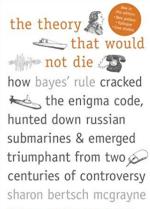


PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP

aids in getting excited about learning

the following help understand the larger context of what we will study





"If you're not thinking like a Bayesian, perhaps you should be." —John Allen Paulos, New York Times Book Review

is this course right for you?

• prerequisites:

- linear algebra, calculus
- probability: ideally at the level of ORIE 3500
- programming: python

is this course right for you?

• prerequisites:

- linear algebra, calculus
- probability: ideally at the level of ORIE 3500
- programming: python
- caveat emptor:
 - may not be ideal as a first course in ML
 - we will focus on Bayesian methods, and ignore alternate 'frequentist' methods
 - will involve a fair bit of additional reading and programming, and some 'Bayesian philosophy'