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6.1 Overview of the last lecture

In the last lecture, we wanted to find a DSIC auction that maximizes expected revenue. We
showed that if bidder i has valuation vi ∼ Fi where distributions Fi are independent and
known, then we can allocate and price using the VCG mechanisms on virtual valuations:

φi(vi) = vi −
1− Fi(vi)

fi(vi)
.

When φi(·) is monotone increasing, we say that Fi(·) is regular. In order for this auction
A = (x, p) to be DSIC, we require that φi(·) be monotone increasing for all i. Because the
auction is DSIC, the bids are equal to the bidders’ valuations, i.e., bi = vi. We can then set
prices according to Myerson’s Lemma. Lastly,

E[Rev(A)] = EF1,...,Fn

[
n∑

i=1

φi(vi)xi(v)

]

Note that only bidders with virtual valuations φi(vi) ≥ 0 are considered in the auction
and that there is a reserve price of φ−1i (0) if i wins the auction.

6.2 Overview of this lecture

In this lecture, we will see that VCG mechanism with virtual valuation does not necessarily
make intuitive sense, so it is hard to justify its use. Instead, we want to consider simple
auctions where we can lower-bound the expected revenue by some fraction of the optimal
solution. In other words, we want to look at approximately optimal mechanisms.

6.3 Review of expected revenue-maximizing auctions

Consider a single-item auction with n bidders and regular valuations. To maximize ex-
pected revenue, the optimal allocation rule is to pick the bidder i with the highest virtual
valuation φi(vi) and charge a price pi = max{φ−1i (0),maxj 6=i φ

−1
i (φj(vj))}. If the valuation

distributions Fi are iid, so that vi ∼ F for a common F , then the monopoly reserve price is
r = φ−1(0). This setup is equivalent to running a 2nd-price auction with reserve price r.
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As an example, suppose F1 ∼ Unif[0, 1] and F2 ∼ Unif[0, 2]. Straightforward calculations
show that

φ1(v1) = 2v1 − 1 and φ2(v2) = 2v2 − 2.

The item is then allocated to the bidder with the highest virtual valuation, max{φ1(v1), φ2(v2)}.

� This type of auction may lead to bizarre results; for example if x1 = 1, then

p1 = max{φ−11 (0), φ−11 (φ2(v2))} = max{1/2, v2 − 1/2}.

If v1 = 3/4 and v2 = 1, then the item would be given to bidder 1 rather than bidder 2, and
bidder 1 would pay 1/2. Therefore in some cases the item may be awarded to bidder 1 even
though bidder 2 has a higher real valuation.

For practical settings, we want simple auctions. We will attempt to relax our objective of
optimizing revenue to approximately optimizing revenue; see [1] Chapter 4-5 for more details.

High level approaches:

• Use knowledge of Fi to design simpler auctions

• Resource augmentation (ensure more bidders)

• Learn Fi from samples (kind of like bandit problems)

A typical simple auction that we will consider is a posted-price auction, one in which we
set discriminatory reserve prices.

6.4 Prophet inequality

Consider an n-stage game in which at stage i, a gambler is offered a prize Πi ∼ Fi and must
decide whether to take the prize or move on to the next stage. Assume that the Fi’s are
independent and known and that the Πi’s are only revealed at stage i. The objective of this
optimal stopping problem is to maximize the gambler’s expected reward.

This problem can be solved using dynamic programming. It can be shown that the op-
timal policy is to set thresholds {ti}, and stop the game when Πi ≥ ti. However, we prefer
to get a simpler, approximate solution with a single threshold t for all stages. That is, the
single-threshold strategy At is to accept the first prize such that Πi ≥ t. Clearly this strat-
egy is suboptimal because we may end up selecting no prize when we would do no worse by
accepting the last prize in those cases.

The next result, commonly known as the “prophet inequality”, shows that there exists a
single-threshold policy whose expected reward is at least half of the expected reward of the
oracle setting in which all rewards are known in advance.
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Theorem 6.1. (Samuel-Cohn) For every sequence {Fi}ni=1, there exists a threshold policy
At that achieves

E[Rew(At)] ≥
1

2
E[max

i
Πi]. (6.1)

Proof: Let q(t) = P[No prize is picked by At]. Then using the law of total probability, the
left-hand side of (6.1) is bounded below by

E[Rew(At)] = t(1− q(t)) + E[Πi − t : Πi is first prize s.t. Πi ≥ t]

≥ t(1− q(t)) +
n∑

i=1

E[Πi − t |Πi ≥ t, Πj < t ∀j 6= i] P[Πi ≥ t] P[Πj < t ∀j 6= i]

≥ t(1− q(t)) +
n∑

i=1

E[(Πi − t)+]q(t).

The right-hand side of (6.1) is bounded above by

E[max
i

Πi] = E[t+ max
i

(Πi − t)]

≤ t+ E[max
i

(Πi − t)+]

≤ t+
n∑

i=1

E[(Πi − t)+].

We can then choose t such that q(t) = 1/2. Substituting this choice of t gives the desired
inequality. �

Is it always true that there exists t where q(t) = 1/2? If q is continuous, then the answer
is clearly yes. For the case where q is discrete, see [1] Chapter 4 for details on how to use t.

6.4.1 Discriminatory pricing auctions

Returning to single-item auctions, suppose that vi ∼ Fi are independent where the distribu-
tions Fi are regular. We would like to determine posted prices ri for each bidder.

By choosing a value r̂ such that P[maxi φi(vi)
+ ≥ r̂] = 1/2 and setting a reserve price

of ri = φ−1i (r̂), we can appeal to Theorem 6.1 where we view the customers as the n stages
where the ordering no longer matters. To allocate the item, we do a lottery among the
bidders i satisfying φi(vi) ≥ r̂ and charge the winning bidder its reserve price of ri.

In fact, we don’t need to do a lottery to allocate the item. We can use any allocation
rule that does not look at the bids amongst bidders with φi(vi) ≥ r̂, such as a priority
ordering on the bidders.
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6.4.2 Prior independent auctions

Assume vi ∼ F iid. Then even if we don’t know F , Theorem 6.2 states that we can still
upper-bound the expected revenue of an optimal n-bidder auction (E[Rev(OPTn)]) by the
expected revenue of a n+ 1-bidder VCG auction (E[Rev(V CGn+1)]).

Theorem 6.2. (Bulow-Klemperer) For a single-item auction with n agents and iid values
vi ∼ F , F regular,

E[Rev(OPTn)] ≤ E[Rev(V CGn+1)]. (6.2)

Proof: Define a third mechanism An+1 on n+ 1 bidders:

1. Run OPTn on n bidders.

2. If item is not awarded, then give it to the (n+ 1)st bidder for free.

Clearly E[Rev(An+1)] = E[Rev(OPTn)].

Claim: Among all DSIC auctions on n+1 bidders which always allocate the item, V CGn+1

has the highest expected revenue. Recall that VCG with virtual valuations maximizes ex-
pected revenue. Since all bidders’ valuations are iid, we have a single φ(·). Furthermore,
because the item must be allocated, there is no reserve price φ−1(0). By monotonicity of
φ(·), this is exactly the same as running VCG on actual valuations.

The claim implies that E[Rev(V CGn+1)] ≥ E[Rev(An+1)], which completes the proof. �

The above result shows that the value (in terms of revenue increase) to an auctioneer
of optimizing over auction formats is essentially the same as that of adding another bidder.
This can be easily converted to the following direct comparison between welfare and revenue
maximizing auctions for n bidders:

Corollary 6.3. For a single-item auction with n agents and iid values vi ∼ F , F regular:

E[Rev(V CGn)] ≥
(
n− 1

n

)
E[Rev(OPTn)]

Proof: Let Y2,n denote the second-largest of n random variables drawn i.i.d from any distri-
bution F (with associated pdf f) taking non-negative values. By definition, E[Rev(V CGn+1)] =
E[Y2,n]. Also, observe that P[Y2,n ≤ x] = F n(x) + nF n−1(x)(1− F (x)), and thus:

E[Yn] =
∞∑
x=0

x · n(n− 1)F n−2(x)(1− F (x))f(x)dx

≤ n

n− 1

∞∑
x=0

x · (n− 1)F n−2(x)f(x)dx =
n

n− 1
E[Yn−1]

Now using the Bulow-Klemperer theorem (Theorem 6.2), we get the result. �
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