ORIE 6180: Design of Online Marketplaces Lecture 7 — February 24

Spring 2016

Lecturer: Sid Banerjee

Scribe: M. Sumida and Z. Tan

7.1 Overview of the last lecture

Simple near optimal auctions for single item (with independent valuation distributions among bidders) based on Prophet Inequality.

7.2 Overview of this lecture

Definition of Bayes-Nash equilibrium, discussion about VCG mechanisms and Clarke pivot rule, introduction of Myerson Satterthwaite theorem.

7.3 The threshold policy (Review of last time)

Calculate threshold virtual value $\hat{\lambda}$; Ask bids, then keep all agents s.t. $\phi_i(v_i) \geq \hat{\lambda}$; Result in k agents $i_1, ..., i_k$; If agent i is awarded the item, then she pays $p_i = \phi_i^{-1}(\hat{\lambda})$; Then given this payment, find the allocation rule: any allocation rule that can ensure DSIC works, e.g.,1)based on priority order; 2)based on lottery.

7.4 Recall the Revelation Principle

Given a mechanism and an equilibrium concept, there exit a sealed bid direct revelation mechanism which is incentive compatible and implements the same allocation and payment rule.

7.5 Bayes-Nash equilibrium

7.5.1 Definition

In Bayes-Nash Equilibrium, there are *n* agents, each agent *i* has type θ_i , *F* is the joint distribution $\{\theta_i\}^n$, each agent *i* chooses a strategy $s_i : \theta_i \to A$, where *A* is the action space. Let vector $\mathbf{s} = (s_1, ..., s_n)$. Bayes-Nash Equilibrium for a game *G* with type distribution *F* is a strategy profile \mathbf{s} s.t. for every agent *i*, $s_i(\theta_i)$ is the best response she can do when other players play $\mathbf{s}_{-i}(\theta_{-i})$, where $\theta_{-i} \sim F_{\theta_{-i}}(\cdot | \theta_i)$.

7.5.2 3 stages of knowledge

ExAnte: every agent *i* knows *F*; Interim: every agent *i* knows θ_i and $F_{\theta_{-i}}(\cdot|\theta_i)$; Expost: every agent *i* knows θ_i and $F_{\theta_{-i}}(\cdot|\theta_i)$, plus all actions $a_i, i = 1, ...n$.

7.6 VCG mechanisms and Clarke Pivot Rule

7.6.1 VCG mechanisms

Assume independent valuation distributions F_i , the social welfare is

$$W(\mathbf{v}) = \sum_{i} x_i(v_i)v_i, \qquad (7.1)$$

and in the single item case (since $x_i = 0, 1$),

$$W(\mathbf{v}) = \sum_{i} x_i(v_i)v_i. \tag{7.2}$$

The welfare under VCG mechanism as

$$W^{VCG}(\mathbf{v}) = \max_{\mathbf{x} \in \chi} \sum_{i} v_i(\mathbf{x}), \qquad (7.3)$$

i.e., it chooses the social welfare maximizing allocation rule

$$\mathbf{x}^{VCG} = \max_{\mathbf{x} \in \chi} W(\mathbf{v}). \tag{7.4}$$

And define everyone else's valuation under VCG mechanism as

$$W_{-i}^{VCG}(\mathbf{v}_{-i}) = \sum_{j \neq i} v_j(\mathbf{x}^{VCG}).$$

$$(7.5)$$

It sets the payments as

$$p_i^{VCG}(\mathbf{v}) = -\sum_{j \neq i} v_j(\mathbf{x}^{VCG}) + h_i(\mathbf{v}_{-i}).$$
(7.6)

So the utility of agent *i* with bid v'_i is

$$u_{i}^{VCG}(v_{i}') = v_{i}(\mathbf{x}^{VCG}(v_{i}', \mathbf{v}_{-i})) - p_{i}^{VCG}(\mathbf{v})$$

$$= v_{i}(\mathbf{x}^{VCG}(v_{i}', \mathbf{v}_{-i})) + \sum_{j \neq i} v_{j}(\mathbf{x}^{VCG}) - h_{i}(\mathbf{v}_{-i})$$

$$= W^{VCG}(v_{i}', \mathbf{v}_{-i}) - h_{i}(\mathbf{v}_{-i}), \qquad (7.7)$$

where h_i is a special function of i^{th} bidder that only depends on others' bids. So under VCG, bidder *i* chooses the bid in the following way

$$\max_{v'_{i}} u_{i}(v'_{i}) = \max_{v'_{i}} \left[W^{VCG}(v'_{i}, \mathbf{v}_{-i}) - h_{i}(\mathbf{v}_{-i}) \right].$$
(7.8)

We call function h_i the "pivot rule", designing a proper pivot rule is the key for achieve simultaneously the following conditions:

- 1. Welfare maximization
- 2. Incentive Compatibility (IC)
- 3. Individual Rationality (IR)
- 4. No payment to agents by the seller

We will introduce one important pivot rule that satisfies $1 \sim 4$.

7.6.2 Clarke Pivot Rule

Note that by design of the VCG mechanism itself, 1 and 2 above are free no matter how we select $h_i(v_{-i})$. Welfare maximization is got for free since by the way of choosing **x** in VCG (8.3), and IC is also automatically satisfied because p_i is independent of the bid of agent *i* (8.6). So our goal is to design a h_i that make it satisfy the last two conditions, i.e., nonnegative utility for each agent and no payment to agents by the seller. For example, if we have simply $h_i = 0$, then by (8.6), p_i can be negative, i.e., the seller needs to pay the bidders, which is not desirable. So we want a better pivot rule.

The so called *Clarke's Pivot Rule* is:

$$h_i(\mathbf{v}_{-i}) = \max_{\mathbf{x}\in\chi} \sum_{j\neq i} v_j(\mathbf{x})$$
(7.9)

Assume $v_i \in [v_{min}, v_{max}]$ where possibly $v_{min} < 0$. We could interpret a negative v_i as the seller's cost. Then we can rewrite bidder *i*'s payment rule as:

$$p_i^{VCG}(\mathbf{v}) = -\sum_{j \neq i} v_j(\mathbf{x}^{VCG}) + \max_{\mathbf{x} \in \chi} \sum_{j \neq i} v_j(\mathbf{x})$$
$$= -W_{-i}^{VCG}(\mathbf{v}_{-i}) + W^{VCG}(v_{min}, \mathbf{v}_{-i})$$
(7.10)

The Clarke Pivot Rule has the following properties:

Proposition 1. $u_i(v_{min}) = 0$

Proposition 2. Among all mechanisms that are IC, IR, and welfare maximizing, VCG has the highest expected utilities for each bidder

Proof: Let A be any other auction that is IC, IR and welfare maximizing.

$$\mathbb{E}_{-i}[u_i^A(v_i) - u_i^{VCG}(v_i)] = c_i$$

where c_i is some constant independent of v_i . This is because the only difference in the two utilities will be h_i term which does not depend on bidder *i*'s bid.

Suppose FTSOC this constant is negative, i.e.

$$\mathbb{E}_{-i}[u_i^A(v_i) - u_i^{VCG}(v_i)] < 0$$

Consider the case $v_i = v_{min}$. We know $u_i^{VCG}(v_{min}) = 0$,

$$\implies \mathbb{E}_{-i}[u_i^A(v_{min})] < 0$$

 \implies A is not IR $\Rightarrow \Leftarrow$

7.6.3 Example: Bilateral Trade

Consider the case where there is one buyer with value $v = v_{buyer} \in [v_{min}, v_{max}]$ and one seller with cose $c \in [c_{min}, c_{max}]$. Can think of the seller's value as $v_{seller} = -c \in [-c_{max}, -c_{min}]$

The possible allocations are $\chi = \{\text{sale, no sale}\}$. VCG auction will allocate *sale* if v > c and *no sale* otherwise.

If a sale occurs, the VCG payments will be:

$$p_{seller} = W^{VCG}(-c_{max}, v) - v^{VCG}_{buyer}(-c, v) = \begin{cases} v - c_{max} - v = -c_{max} & \text{if } v > c_{max} \\ 0 - v = -v & \text{otherwise} \end{cases}$$

and

$$p_{buyer} = W^{VCG}(v_{min}, -c) - v_{seller}^{VCG}(-c, v) = \begin{cases} v_{min} - c + c = v_{min} & \text{if } v_{min} > c\\ 0 + c = c & \text{otherwise} \end{cases}$$

We can rewrite the payments as:

$$p_{seller} = -\min v, c_{max}$$
 $p_{buyer} = \max(v_{min}, c)$

Claim: If $v_{min} < c_{max}$ and $c_{min} < v_{max}$, then $p_{buyer}^{VCG} + p_{seller}^{VCG} < 0$ The above implies that the mechanism must make a payment to the seller.

Theorem 7.1 (Myerson-Satterthwaite). In the bilateral trade setting, no mechanism can satisfy all 4 of the following properties:

- 1. Welfare maximizing
- 2. IR
- 3. IC
- 4. Budget balancing