
-Conditionally
,

- Random vectors
- Conditional Expectation - basic defn
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- Conditioning on a T- field



Random Vectors
#

- Random vector ¥ of dimension n is a collection

of n random variables X (Xi,Xu, . . .

.

Xn)

- CDF FfLxyxz, . . . ,xn) = IPIXI '-Ki, Xuxa, - . ;Xa⇒a]
t intersection
of events

- tf k is discrete
,
then X has a pmf

- -

PICK,x,. . ;xn)=lPLXi=xyXExy . . ., Xa -- xn]

If K is absolutely continuous
,
then it has a pdffx

s.IE/xyxz....xn) . fizzy . . .tn/dzidzz...dzn
-

- a - re - I

- For fn g : IR
"
→ IR

,
its expectation is

E- [gtx)] =II . - - IgGaps. . . ..⇒flaps.. ..im/dxidx. . . -da
This inherits all the properties of El. ] in one-dimension
- If Xi 1×21 . . -

IX n ( mutually independent )

then Exlxyxs, . . ,xn)= II. Gal faked . . .
Fxnlxn)



Basic Conditional Probability (Revision of what you
#

should have seen before)
- For A

,

-BE F st PCB] >O
,

1P[A/B] -- PLA RIB]
- Pictorially A B

- Similarly we can extend this to 9. Is

conditioned on events

• For any so. X and event A
- conditional CDF Fan.lt) = PIXEHA]

-
natural event - A {y -- y} for some soy

• For discrete so X

pxn.lt#PxtlAI,ElxtAI=ExRaaH
.
For continuous so X

,
Y
,

and ystfyly)>O

fxiy-ybf-fxyfygf.EIXH-yf-Ixfxx.fm
- Useful fact - for any ro X and event A

E-[X Ha] = HIGH] PLA]



conditionalExpatation-foiapc.ondifi.fi:&)
• Now consider no

. X andY
and let Olly) EE HH -

- y] .

Then the conditional expectation
of X given Y is defined as

Efxly] = 0 (Y)
- Notes

ITELXTD is a random
variable !

ii) Sometimes denoted as

EYEX] (see Bse
'

maud)



Pnopestiesoftfxlyt
We first look at some props of Eld'd , before trying
to understand it in more detail

.

'

• - E flax , -12×447=7 ,EH , littleEtxaly
(linearity)

- g. Get > gdxlfx ⇒ ELHAM > Elgin's]
(monotonicity )

thesefolloofumpnoputiesof.IE#Thm-ELEfxlyD=ECx] (assuming Eflxika)
PI " ElEhly]]= Iffy, Effy.gg/gltouu-uk)

= II.in *lb
Fubini
→(Assuming Efixika) = If fxyfn,y) dy ) doc

= I xfxlxldx -- EG]



Then- E [ GG) H] =g G) ,
and more

generally Efg hkidtif-gtdftfhlx.dk)
(pull - out property)

PI - Again we will assume X.Y have a joint
pdf fxx .

Now for any yet fyly) > 0

EfgG)hlxid Hey] = Igtdhkidfxf.LY dx
= gladIhh's'f¥÷dn
= g (g) Efhlx,g)Hey]

Thus EIGHTHkill 'D = g EGG,'D 143
thm-lf-XIY.IE#YI=EgxD

(independence I conditioning)
PI - E [gfxtly-yI-Igbdfyyfdn.net

= IsHE.tn?f#stHEIglxD



Conditional Expectation = Estimation
-

• The best way to
'

understand ECXH] is
in terms of estimation - In particular

,

suppose we have access to a random

variable Y
,
and want to use it to

approximate
°

some other S.o. X as

I -- g ly) for some fn g .

-

Claim - g# = ELXH] is the MMSE

(minimum mean - squared essos) approximationiiig÷:%%Ee!
-This can actually be used to define ECXIY] !
- You will see this in more detail in 6700 :
however we will now see a brief proof of this .



Ege For
any no. X , suppose we want to

approximate it by some econstatb EIR , such
that we minimize the mean- squared error EKX -b)2)

Then we have

Efx-b)D= E - Ext Ktx -HTT
VIN

⇒Ex -b) Eh-*,
= Ekxtt +EKEx-bsg.ci:9#s.ot)--t2EfCx-ExlLEx-bD

-

- O
= Valx) t Eflb -END

i. to minimize EKX-b)D , we choose b*= Efx]
-

• Now we can extend this to estimating X by GG) .
We have EKX-gGDY-IEK-gGDT.GG) dy
where EKX -gut )4Y=y]=I⇐-glyltfxix,G) de
-

= fxyk.gl/fyGl
From above

,
we know AUX-SHIH -

- y] is minimized

by setting g*ly) = EH * y]
⇒ The MMSE estimator g

#(y)=ECxlY]



6 I

Eg - Visualizing, FLEX IT]
'

distributed as
'

Suppose D= to, IT
d

,
X -- (x ,xd , Xyxvtvniffoi

Y O w E [9%5]×6,0 . s] -
Xi IXL

ai: .. H÷÷÷e÷÷÷i¥÷÷:÷÷÷÷:
.

- Recall we defied ofe) to be
the smallest 5- field containing
a given collection of sets E
The T - field offAoA,A>Ad) is referred to as the
① field generated by Y ,

and denoted Fy
,
and

the conditional expectation ECXIY] can now be alternately
written as ELXIF

,] - this makes it clear that

ELXH] is a function that associates a number
with each set AE Fi, (and such that the numbers

obey Kolmogorov's axioms)
go.gg, ¥gY⇒¥*F"

"""T

- In this case ECXI Yeo] = ,
2

,
*2day

= (0.25 , 0.25)

and Elxly]={I:*:3:3 :
( 0.25,0.75) ; 4=2

(0.75 , 0.75) ; Y=3



• Thus Efxly] = Efx II
,] essentially

takes every set in Fi, and associates

the
"

most likely
' ( in a mean -squared sense )

number for X in that set
.

• You can think of this as a form of
• data compression

' = given some
G- field Fy ( generated by Y) , and a no. X, we
'

smear
' the information of X over Fy
-

•
We next use this idea to give a more

general definition of ECXIY] , which covers
the two definitions we have seen

i) E-[x ly] = g Gl , where glytftfxlyy]
ii) ELXH ) is the (unique) fn g G)
with Efg IDK which minimizes the

mean - squared error Eflx -gu) ))



Conditioning on a G- field
-

We now see a more abstract defn
of Eddy] that generalizes the previous
defns , and also the previous discussion .
- It is more general as it makes less
assumptions (Note : for defnlil, we assumed
X and Y have a pdf , for it , we needed EkgHB
(x ; in contrast we will now only need
E- [IgG) I] s a , which is weaken)

.

- It is more intuitive (even though more
abstract !) once you get comfortable with
the use of G- fields
- It captures the idea of Efx 14] as
a means of '

compressing information!
- It will be important later when we
talk about Markov chains I Martingales



We first need some defns . Let
(D
,
F
,

P) be a given probability space .
i) A collection D is a sub f- field of F if
D is a o- field and DEE

ii) A ro X is said to be D -measurable

or adapted to D if {Xe -BED
iii) For any collection of so. E- {Yi iiEI},
the 5- field generated by I (denoted
as TH) ⑤r Fi ) is defined as the

smallest sub - T- field off containing
all sets of the form { Yi St}

, III.
.

iv) -The o-field DE LA, 013 is referred to
as the trivial T- field .

The only me.
which are measurable w.rt D are constants

,

i.e.
,
X(WH c f wer (for some CER)



Defy- Given prob space (RFP), r. o.
X with Ekka

,

and sub afield
DEF

,
the conditional expectation

of X givenD ,
denoted ELXID] is

the (almost -sure) unique r -

o on (R,Elp) at .
i) ELXID] is D - measurable

ii) E [(X - EGAD]) # a ] -o tf AED
=act- F unique ro. on (r,F. D) satisfying the above
( see for example, Hajek Ch 10 . I )

. Note -
i SED for any D, we can set A-R

in the above defer to get
E [(x - ELXIDI) He] = Ekx- EkaD)Do
⇒ ECECXID]] = EG] TD

Indeed Efx]=E[Xl 19433
,
i.e
,

the trivial
T- field .



• We can now restate (and prove) properties
of Efx ID]

.

Below
,
we assume Ekka t r. o.

i) Elaxtby I D) = a EG ID] + BELYID] ( linearity)
ii) tf X is D -measurable

,
then EGG) ID] -- glx)

(more generally , Efglxlhlx,DID]=gCxtEfhCx .DID] )
(pull-out property)

iii) If A CD CF (tower rule)
E- [ EIHAIID] -- ELEK Id] = EWA]

• Note - The way to remember the tower
rule is that if you condition A on

multiple f- fields , then this is same
as conditioning on the smallest for coarsest)
T- field .

This corresponds to the notion of
'

conditioning as compression
'
- if you

compress X. to a coarse 5-field , then

you cannot recover information !



• Pfoftowenrule - Let A CDC F
.

We want

to show that Ef EfxID] It] = EWA]
.

Note

that both E [XIA] and E[ EEXIDI It] are

A - measurable (by defn, since they are 9.0. of the
form ELHAI) .

Also note that we can write

X- ELEGIDI IA] = (X-EEDD - (ELEKTRA] -Efx
Now for any AEA ,we have AED. By defn of Ef . It], we have

Eflx - EH Ia] -- O, EKEIEEIDIIAI-EGIDDHa.to
⇒ E- [(x -ELEK la])Ha] --of AEA

However
, by the fact that ELHAI is as. unique,we

must have EIELXIDIIS] = Efxlt]
-

Note - Instead of defining Efxl 'D in terms of EKITI]as

abf; , we can directly define it as follows : given
St ElfXl ) ca , then Elxly] is the (unique)

fn GH ) sit for every non- negative bounded fu Y,
we have E[(X-gly) ) YC'd ] -- O a.s

- See Bre'mand Then 2.3.15 for proof of existence I uniqueness


