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- Finite chains & Perron - Frobenius
- Reversibility
- The Ergodic Theorem for HMC
- Foster - Lyapunov condition



• Stochastic Process - Collection of .ro
.

(Xt; tETI
- I

Xt EX
,
on a common probability space (R ,I IP) ,

and indexed by a time parameter t .

- F- No
,

X = discrete → discrete - time
,
discrete space

process . Ef - random walk , branching process
-T = IRt

,

X Idiscrete⇒ continuous -time
,

discrete -

space process

Ef - Poisson process, queueing models, epidemics
- F-Rt

,

X = Continuous→ continuous-time
,

continuous-space process
Ef-Brownianmotio#
•Mai ⇒ Stochastic process lxnin-CN.io) on
discrete space X obeying theNo, do, x; . . , scat, >c) EX

"

P[Xn= 24 Xoxo
,
XE Ki

,
.

.
. ,Xn-i --xn .]=lPfXn=HY* A

• If in addition ,
Pkn xn-t-yf-lpfxm-xlxm.isy]

for all n , m C- No , then the MavKoo chain is

said to be time -homogeneous fog!Imogeneas Markoo)HMC



• HMC (xn) has associated transition probability
matrix P -={Pij

,

} Ex
,
where

Pij =P fkn ,
= i lkn=j]

• Properties of P = i) Pij 30 fi
,j EX
'

ii) ¥IPij = If i EX

Any matrix with these properties is a stochastic matrix
( note though that X may

be finite or countably infinite)
• We want to study Xn starting from some XoEX

Some notation (all vectors are Edwyn vectors)
* In = LIT lil) iEx

, ¥#lift = Distribution of Xn
To ± Starting distribution of chain

• Pij (m) = lpfxn.im =jlXn= i] = m - step transition matrix
⇒ By definition , ITT -

- TotpCnl
,
Tniiihntpln)
f-

(Chapman - Kolmogorov Egns) For an HMC, we have
Pcn) = Ph th C-No

,

and hence

ITN Fm = Tnt pm f n, m C- No
-



• The Chapman - Kolmogorov egus give a linear algebraic
view of an HMC .

An alternate probabilistic view is to

define it in terms of a recurrence relation

(Recurrence View of HMC ) - Let Eni n EIN ! be an
i id sequence of random variables in some space E
and let X be a countable space .

Given any function
f : Xx F→X

,

and Xo E X
,
the recurrence relation

Xna = f ( xn
,
2- htt)

,

n EN

definesaHMCCXn.net#
Egf (simple random walk) - (Xn ; n EINO) on X -

- I is
called a simple random walk if X onTo

,
and

- (qfat rix view) Let P ⇐ ( Pij ) where Pii. =p
,
Pim ,

= I-pad
ij = 0 if j 4- { it, in} . Then XNITN with III. totpntn

- (Recurrence view) Let Zn
a :p Ip .

Then Xna=XntZn"

the RW is said to be symmetric if f- Yz)



• Any stochastic matrix P = fnflxn ,2¥ with 7*06,17
If Xn= i

,

then choose Xue = j if II.Piaf Zn€ Pin)
Any f (Xn , Zha) for any Zm ,

EF E Stoch matrix P

(setPij=P[fGn,ZnH=jlXn=#
Finally , any MC can also be viewed as a

random walk on an edge - weighted diredeg graph
(Random Walk View of HMC) - Consider an edge - weighted
directed graph GLV , E. W) with f- X, Ci ,DEE
if Pij > 0 , and Wij -- Pij . Then HMC (X# new)

corresponds to a random walk on G , where the walk
transitions from node i to a neighboring node j with
probability Wij . The graph GIV , E,w) is called a transition

.

• Transition diagram for the simple random walk

. .

Tip i -p i -p t-P l -p t-P l - p



Exampksofmartha.rs
• Simple Random Walk - Xn=Xn - itZn

,
In I:YI

.

Tp Tp Tp Fp Fp Fp
i-p.IM/uatedSwith-XnXn.tYnxn.)mod2YnGcBeP=o

p Ber (g) ; 2=1
I -P ta
⑧

e. (Gatton - Watson) Branching Process -
Xn = Zn; ,

Zn
,
i ~ { 'Pk } new

Eg - if zn.in/0z:Ppp.p '' ¥52
"

a. ← →

→⑥ area ⑥ ⑧

abseiling "paoiTET

.ci#rsRuinXn=XxIixo;9bZIPx'nsnnI
.

P

absorbing Fp%¥yp absorbingstate t -P state

⑧

• Deterministic Monotone Markov Chain Xn=Xn -it I

0¥07. . .

( Useful far counterexamples)
#

• Random Walk on GCV , E ) - Let A - ( Air- Hee
,pees) be the adjacency

matrix of G ,
and D-

'
= diag ( Ydglil) , where degli ) = E. A ii.Then the Rwa

G is given by the transition matrix D= D- 'A



someqaantitiesassociatedwith-akoha.rs
• HittingTime - {Xn} new. Marko. chain on X .

For any set of states
B E S

, hitting time FB = in f {new / Xn EB} (for some Xo)
( TB -- O if Xo E B ,

TB Eta if Xn Et B th )

* (First) Visit Time -
for

any
state j EX , its first visit time

is defined as IG) = int {NEI !!¥: } , and its
teth visit time is defined as Tjlktinf { n> Tick -ill Xn=j }

• Returnee - For any state j EX ,
its return. time is

defined as Tjj = inf { HEIR . -Il Xn=j , Xo=j }
• Goer Time - For

anyManx,
coverthe Tcooefinf {NEINIn>Tj (1) tj EX}

Classifications
• A state j E X is said to be

- recurrent if IPI Tj; sa] = I

f.positive recurrent if E [ Tj;] - anull recurrent if recurrent but not positive recurrent
- transient if Ipf a] L L
We will later see conditions to determine this classification



Classificationofstates (topological)
The States of an HMC can also be classified by
bytopologicdpropertiesofthetransitiondiagramG.LYAlienists
• Recall kid EE iff Pij 70

.

State j is said to be accessible from
state i if I directed path i → j ( in probabilistic terms

,
j is accessible

from i iff lpltjsdxoEka , i.e ., 3M >0 s.tl?jlml=(PM)ij > o )
• States i and j communicate if j is accessible from i , and i is accessible

from j .

This is denoted as i es j
,
and is an equivalence relation

(ie
,
i ← i

,

its j ⇐ jai
,
and its j

, j⇐ k⇒ i← k ),
and it partitions

X into disjoint equivalence classes called communicating classes
• l in terms of the transition diagram , a communicating
class ⇐ a strongly connected component of G
-

• A set C E X is said to be

- closed if I jecpij-tt.EC
- irreducible if i← j t i , j EC ( ie

,
i
,
j C- a comms class)

•
The period of a state i EX is defined as gcdlnlpiilnbo}
State i is said to be aperiodic if it has period L .

th.asspropertiesfijEX.iei and j have the same period
ii) i is transient iff j is transient
iii) i is null recurrent iff j is null recurrent
iv) i .

is positive recurrent iff j is positive recurrent



1hm (Decomposition) For any MC , X can be partitioned uniquely as
X = TUG U Cz U

. . .

where Tis the set of transient states, and Ci are irreducible , closed sets
- Every finite MC has at least one C = irreducible closed
#

Pictorially we have thefoll ing
-
-

e

,

• o→o9°#••→o
G
Ms
..-

o
'
.¥€£i÷*÷i a '÷t÷÷÷i÷÷÷÷÷÷I

-
- -

- -

I

#

• Any finite MC starting inTeoentually hits some C ,and then staysthere
- We will now concentrate on understanding a singe class C

.

The - Let P be the transition matrix of an irreducible
Markov chain (i.e.

,
X has a single nmuniatig class) with period d

non fi
, j EX ,

F m 30 and no 30 (possibly
depending on i

, j) s
.
t
.

Pij (m t nd) > O f n > no
- In other words

, for an irreducible MC , the matrix P
"

eventually
has all non-zero elements

.

Does it however converge ?



stationavydistributionofauHMJ.ttvector IT is said to be a stationary distribution of
an HMC if Thi) 30 Tj EX , ETH =L and

ITT = ITT p

• (Global Balance) Alternately , IT can be defined by the egns
IT ( i) = Thi ) Pji

More generally , for any set S E X (and SE X Is) , we have

EI lil Pii = E. FETIDB. i
ITG-I Pji

• If It = IT ⇒ It + s = IT f s Zo iessies

Egt⇒T¥
Eg - For any MC P, its Lazy Markov chain is the one where
at each step

,
we do nothing with prob 4

,
else run P

. Denoting
its transition prob matrix as Q ,

we have

Q = 4 It 4-a) p
- Let IT be a stationary dist of P .

Then ITTQ = ITT

Thus a lazy chain has the same stationary dist for any d .



• For any indexed collection of res (Xt it EIN) , a
filtration ¥1. a collection of f- fields Et or R

Ft = THE it'Et) .

In other words
,
Ft is made

up of all the events of the form { Xt- Ea , t
'
Et}

.

• An event A is said to be adapted to E if
3- a function lost . HALw) =D ( Xtho) ; t

'

Et)
• for any (Xt it EN) with associated filtration
t

,
a stopping time I is a 1N - valued r

.
v

for which (Est) is adapted to E t t
- i.e

.

,
T is a non -anticipative random time

Ey - First visit to x is a stopping time
Last visit to x is not a stopping time
⑧

•THI ( strong Markov Property) For anyHMC with
transition matrix P

,
and any stopping time P

i) Given Xz =i
,
process before and after Tae independent

ii) Given Xz = i
, process after I is an HMC with

Kei
,

transition matrix P



Thom (Existence and uniqueness qq.IM?Ihaeicns?eng.If X comprises of a single irreducible
class then there the equation KTP : set has

a unique positive so In upto multiplicative constants . Moreover ,

tstatiawydistrobeysTET.cz
Pf - We will show this by constructing a

-

so In
' TT

- Consider any z C- X. Define Ezf . ] EEE Ho-z]
Let Fly) =F¥# of visits toy before returning to Ef

' tis
.

Ez[ Et I *⇐ y
←
"Ht x⇐⇒x⇒3

= ypf
'
⇒ t }

z
Xt =L , Taz > t]

- Since chain is positive recurrent , we have EEL zz] Catz

⇒Fly) E II. Pz [Izz> Ef = E'LIZZI ca
- Now to check IT is a stationary dist, consider

€+544 Pay = .EE#Io.PzCxt=x,Tze7ttiJfBcy ④
for some Y E X



- Let Ft = rlxgxy . . .

,
Xt)

.

We have

{ Iza > te 3 = { Taz > t} C- Fe
⇒ lpzfxt-qxer-y.tzzzttf-PIXE-agtzz.tt Pay
- By Tonelli 's them

,
we can interchange Ei in ④

⇒GIT (a) Boy =I?§lxPz[xt⇒c, xtti-y.tzzat.it
= EIRIK. -- y , Taz> t] (Byrds:3;)
= miss

= It ly) - Pz [Xo --y , Izz > O ]
t.IT/PzfXt--y,Tzz-- t]
- Sa

Now if ytz , then Xo '-X t and S , = 82=0
. If

Y
'

- Z
,
then Xo = X -↳z=z ⇒ S ,

= 82=1

thus wehave?III.c) Pay = Fly) t y EX
- Finally ,

to make IT a probability measure,
we can set IT Cx) = ELI

Efezzy
.

In particular
,

we have IT (a) = YEEL.ca > 0 since Efren] safe



- Now we want to show that ITH = YEMI is unique
For this

,

let t be another stationary dist . We
know that if Xo n TT , then Xt -F t t > o
- Now suppose Xo TFT .

For any KEX,

'

we have

IT Efts..] = P[xo=x]5Pfc..> t ]
= PIT. ZHX.az]pGo⇒d

second visit to x

= II BE,d4zt , Xo ⇒I
- Define an =P [Xetx for O Et En]

,
a .

-

- Pfxotx]
. Note that { Xt tx for Osten} E Ext ta fer Otten -A
⇒ An £ An - i fan -z E

. . .

• Moreover if Xt n TT ft , then we also have

IP [ Xttx for Osten] = Pfxttxfe let Ent I]

- Now consider bn = PITI2) 3h , Xosa] , br-PE.ly > 1. Xo --I =Pfxo⇒I

Then we have FINELLI.] = Ibn -

- lpfxo⇒It Isbnn
n



Moreover bn = PIX .

x tf tf tf n- I
,
Xo -- x) t n32

- lpfxtt at 1 Et En - if - P [ xetx to stent]
⇒PfxttxfoEt En-21 - IP[Xttx FO E EEN - I]
= An-z - Ant

where the last line uses that Xen tf t

- thus Feel Elena] = IP [ Xo ⇒It Islam - and

= lpfxo -

- x] t Pfxotx] - Liga an

Also him
,

an Thing lP[Xt ta VO ft f D= I -PG. = o

as the MCis positive recurrent t.sc EX
⇒ Fla) Etan) = I t x E X

,

#stationary
thus IT Ix) = YE Kaa] is the unique stationary dist
D#

Thus
,
for an irreducible

,
positive recurrant MC

,
we have that

TTT p -- ITT has a unique solution sit. Tbd >0 the EX
,

and

II. IT64=1
.

Moreover IT satisfies ITGc) -- HEELED



Someusefulfaotstroadmapi) How do we check if a MC is positive recurrent ?
(irreducibility is easier to check)

- Directly check E fear] so far see aEX
- Finite -state

,
irreducible chains (via Perron -FrobeniusThon)

- Foster - Lyapunov criterion -

'

Potential fn argument
'

ii) what does IT look like ? When is it easy to compute?#
Ef(Doubly Stochastic Matrix) tf Pis nxn irreducible

,

and §
,
Boy =L

/

(ie
,
each column sum is 1 )

,
then IT = En 's . . .If

PI-checktTTP-tt.Byuniqenessoft.weave.de#
- A more useful condition - reversibility

iii) When does ITn→ IT for any starting state To
- Convergence than

i v ) What can we say about time
-averages of functions of

an MC ? - MC Ergodic thin
v) How fast is this convergence ? How can we quantify
it in terms of the MC properties ?
- Mixing tines of MCs



• finiteMCandperron-fr-o-bem.us
- Finding IT for an MC involves soloing ITT f- IT?
Now for X finite ( so say PI n xn), this is now

essentially same as computing a left eigenvector with
eigenvalue 1 .

Our previous then says this always
exists and is unique if MC is irreducible and positive

recnrrent.wenextseethisspecializedtofinitep.ae
First

,
we note that existence and uniqueness of IT does

not imply convergence -

Ef - Let X = { 1,23 and Piz =p , =L .
Let to = (b)

⇒ IT t = ( 'o) if t is even
,

and The = (9) if t is odd .

Clearly It HIT (even though ITE =Pthot , and IT is unique)
• The problem inthe example is that the MC is periodic .

.

Its easy to see that this will always lead to
non convergence .

What if MC is aperiodic ?

. Defy - A non-negative square matrix A- is said to
be primitive iff 7k sit At >O .

- P primitive ⇐ P is irreducible and aperiodic



• For any matrix A , its characteristic polynomial fala)
is defined as fab) = det ( A - II ) .

- The eigenvalues (7,7, . . , Tn) of A- ane the roots
( possibly complex) of FACT)
- For any e

- value Xi of A
• Its algebraic multiplicity Ma Gi) is defined as
Mahi) = largest integer k s

.
t (X -Tik divides fatal

. Its
'

right e-vectors Ei? {ol LA -Ti Ito -

- 03
.
Its left e - rectors E! = { ol u ( A - III) --o}

. Its geometric multiplicity Tabi) E dimension of
EIR (i.e

.
# of linearly independent right e-vectors)

.1E8aHi)EMalPi)#

ThmD (Perron - Frobenius) Let A be a non -negative
primitive nxn matrix

.

Then I real e- value 1 ,
sit

.

Di E IR

i naan -- racial
iii) 7 , > O and I , > Hj T e-values j
iv) I left and right e- vectors corresponding toast u.to , = I



• Corollary - tf Pis the transition matrix of an irreducible ML
i) 71=1 ,

174¥ rjyeylhjl } El-

SLE M = second largest e-value modulus
ii) tf P is aperiodic (ie, primitive) ,then171251
If P has period d , then I ,=3 ,I -- w

'

,
. . .

,
Jarod;

where w = e'" ild are the complex roots of 1 )
iii)
(
we can choose O, = It ,

u , HT and hence

pt = It ITT t Off' ' Hdt)
where Mz

-

- Ma (1)
• Thus to pt -- ITT tEfiTodi¥oµ..mg#=liz3PEf)
⇒ fish) = ( I - d -7) Li - B -D - 2B

, 1=1,12--1 - d - P
Also IT -- att (B d)T ,

and we have

pn -- ¥ f) t Kafi
"

Hp -

E)
T
-

11 IT VE uz



Reoersibility&DetaBaance
- Given MC P with stationary dist IT, define
new matrix Q as ITLilqij = ITG) Pj i fi,JEX

Claim - Q is a stochastic matrix and ITTQ =IT T

Pf - gig
. =

Tfs÷pji ZO tij
Also ¥+9 = ftp.E.tlit Bri = =L

Finally LITT Q); = ⇐×Tli) . gij = ,€HTjlBi=hTj)
⇒ ITTQ = ITT
- Q is the distribution of the ' time - reversed ' chain .
In particular

,
an MCP is said to be reversible

iff Q = P .

- The equations IT lil pig. --TG) gji fi , j are
called the detailed balance equations . They
are particularly useful as they give a surprising

way to compute IT !



Th① (Kelly's Lemma) Let P be a stochastic
matrix on X

. Suppose we are given IT distrito

on X
,
and matrix Q sit

.

i) Q is stochastic i.ie
, §×9ij =L

ii) Detailed balance
"

holds
,
i.e

. ,TTilgij=Tlj ) B- i ti , j
Then IT is a stationary matrix of P

Pf - For any i EX we have

{IT lj) B.i = ,¥tTlil gijJEX

= ITtil §⇒9ij = IT Lil
thushsatisfiesglobalbalan.at/TTP=#
Corollary - For any MC P, if I distributionTst .

Ili) Pij = ITLjlpji Hi, j
Then P is reversible and IT is a stationary
distribution of P



The Markov Chain ErgodicTheorem
#

• We now want to look at
'

long -run averages
' along

sample paths of a MC , i.e .

, I tfgcxe) .

- tf Xt were i it , this is equal to E [gut] . Can we
do something similar for MCs ? The ergodic thm
asserts that if the MC is irreducible and positive
recurrent

,
then in the limit Tea

,
we can equate the

long -run time average with Eitfglxl] ,the space average
wnderlhestationarydistribu.li#
Proposition (convergence of Canonical Measures) Let (Xn , nEIN)
be an irreducible recurrent Could be null) HMC

,
and let

for any state Z E X , define the canonical measure na

as hzlx) = Ez [§⇒ , I Ext --a } HE taste the EX

where Tz (2) is the second visit time to Z
..

For
any
t > 0
,

define Oft) = a.IO HExn=z3
,
and consider

any f-n f
s t

. ⇐ If nzlx) La .

Then for any starting distrito

fig
. It Hel = flash. Get as



Ptfprop : Let TzG)
,
Tzkl , .

.
.
be the successive returns

to state z
,
and define Un = E'

"

f txt)
. By

f-Tzlk) -11
the strong Markov property, {Und is an iid sequence.
- Now if f 30 ,

we have by St

€147 = Ez [ ft
" qq.gg "ng Markov)

= Ez[ IE! ¥×fHl Hated
= Ex HH Ez[ IE

"

1¥.,] Hsi:c":#IT)

= Effendis a by assumption
KEX

- By the SUN , wehave twins ¥ ⇐Ok = §e×fk) halala's.
Tz (Nti)

⇒ tip. In E f txt) = €×fHnzGd as
.

f-Tzu)H

- Now
*since

THO# ETS III.Htt)
,
we have

T T ¥7

E÷÷¥¥¥i÷⇒i÷÷
Since chain is recurrent , lings = a and thus all

T

three terms above converge to ⇐ft) hztn) as TT a.

- For general f , write f
-

- ft f ; where ftnaxlo ,t ) , f- Imaxlo,-D.
Since Elfhit hztnka ⇒

-

each term is well defined pig



④(Markov chain Ergodic Them ) let in GN)
be an irreducible

,
positive recurrent Markov chain

with stationary distribution IT .

For
any fix→ IR

St
. ,§× I flail ITCx) Sd

,
and

any
initial distr Xo-to

tis
.

FAI -- Eff 64 as
.

Pfe - Apply the convergence
result for canonical

measures to floc) =L .

Since MC is positive
recurrent

,
we have ⇐xflxlnz.la/--fExhzCH=EffzzIG .

Thus fine
. ftp.E.fktl-f.im#y=.ExnzH

Now for any f , if ⇐Hail Thi ca ⇒ ¥xHHl hakka
as well

,
since ITLn) a hzln) for any Z .

Thus we have

tins EiI# 'fin.cz#KEiffIYI=ExexfGcnz)ExEXhz(
x)

From before , we know that for a positive -recurrent , irreducible MC, we
have hz# = ITGd tog z

.

This completes the proof .
,{KEX hzloc)



TestingforpositieReeurrence-Lyapuuoofuuct.is#
• We finally present away to test for positive recurrence .

The main
idea is to map all states to a l - dimensional potential function

,

which we can then analyze as a birth- death chain .

-

Th① (Foster - Lyapunov Condition) Given irreducible MC Pon countable

state - space X , suppose I function h :X→ IR sit
.

h ( i) 30 f i EX ← Lyapunov Function

§e× Risk) Kk) sa f iEX ← Ethan.nl/Xn-iKati
iii) For some E > O and finite set F, we have

§×Pli ,k) Hn) Sh ti) - E ti EXIF" Efhlxnxi) Hn-ifhli) - E
thenthemcispositieerearrent.fi#
If .. Let I = return time to F

,
Ye -- h (Xo) H Etch

- By prop iii) , we have Efhlxeei ) IX E- i] Eh Li) - EtiEff
prop Lii ) implies Efhlxeei) l XE- i] < a fi EX

⇒ H KEF
,
we have -7€

EIHT. I Xot ] = Ex [Yeti Hete-41 It Ea feta Hits -41¥]
← Ex [ hated Here It rcxqx, . . .,xD
= Hae -4 EachGta) HE .]
E Hetty h txt) - E H Etcc }

where the lasts follows from the fact that XtEff if ECT



Thus we have Edited E EfYt] - E RE >Ef
- Now since Yt is non- negative , we iterate to get

O E Ea[Yea] E Eiko] - E Ej Pa [I > k]
Also Yo = h 64 since KIEF, and EE Dafuk] = EEE]
⇒ Ex Ec] E E

'

hGc)

- For y EF, we have Eft] = It Ii PCgal E.E]
⇒ Ey ET S I t E ' Ea# Ply ,I had sa by Ciii)

-Thus return time to F starting anywhere in F has
finite expectation .

Now let 4
,
Tz
,
Is

,
.
. .

be the return timesto F
. By the

strong Markov property , Zi
-

- Xa
,
7-EXE , . . - form a HMC

on state space F .

Now Xt irreducible means Zt
is also irreducible

,
and since F is finite ⇒ Zt is positive
~

recurrent
,
with E [Tax] CA fxEF under Et

.

ML

- In the original MC , Etna] = E[EEO Sk HEE.. she]
,

where Sk = The - In t k > I
.

←

Since Fis finite , E-[Skl Xen-- l] = Eek] E (maxeee Eek))
⇒ECE.it?EeEEfenlXe.--eTElklxaeesHeEaskD

K
K

E Cree Ee E3) E.Patak ca

Ba



Intuition.fr#esigninngh suppose h : IR Rt is differentiable
EIICHI = Efhlxtti) - hlxt) txt : x)

T
""'

:E¥*÷:*::' Is . .
drift

Ef (Birth- death chain)
go . . .

Pit gie I fitN

- Let hcx) = x

⇒ E[ hlxn.nl/Xn--xT=px.GctDtgaGe-D--hG4tpa-q
, s a f xEX

- Now suppose Pu - ga <-E for all exceptfinite K
,
then by Foster -

Lyapunov , we have that the MC is positive recurrent
.

⑧

Ff (Discrete-time queue) Xnt , = (Xn - 1)tt An
An-7*01 - If An is iid ⇒ it is a MC .

Also it is
irreducible under mild conditions on An

- Let hlx) = x
- E [hlxn.it/Xn=x] = G-Htt E [An]

= hla) - I + ELAD t x> I{ E [An] ÷ a -- o

Clearly this is finite if ECAn ] La .

Moreover
, if E- [An] - L S - E (ie ,E[An] L l - E)

,
then

we can use Foster - Lyapunov to say that MC is positive recurrent.



Eg_ ( Join - the - shortest queue) - Switch routing in 2 server system
T lexicographic

7¥ Xn = ( Yn
,
Zn)
[
tie breaking

Xm ,
= ( Yn + Antithesis - Hex>03)scheduler Zh + An # LYNCH - A hero}

- Intuitively ,
we need An]52 .

Is this sufficient
- Let EC An] -- 7=2- E

,
Vartan)=r2

2- Bhs
• Iii! (

Nou using Yaz)
-

- ytz cannotwork

g←•←.
As Efdrift] at boundary does not point inwards)↳¥ . Let hlg ,z)=y4E

Define .DhLy,z)=E[Ynet Zhi -th't Zilch,znHy,zB .

Wha is Ahly,zK -S ?

( ily > z > o
Ahly ,z) -- Cy - 1)2- y't ELE -It Any] - ZZ

= - (2y - I) - (Zz- t) + Nz-DX + or
= 2( all -f -y) +or - 24- e) f -2g E - 211 -E)to
⇐ - s if y > fkszzY←d

y > -2=0

Dhlyiz) = - Ky -Dtr
-

L - S if y > fs+E¥)- B
( iii) Z > y > 0 (Symmetric to Lil)
Dhly , -2) E - S if z > Fits)

µ, z > y=o Isometric to "
> fstr7Dhlyiz) E -8 if

Thus fly , z) sty > nanda , p) , z > man, la , ,B) , we have Dhly ,-2K£


