Online Nash Social Welfare with Predictions

Abstract

We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a sequence of $T$ periods and the value of each agent for a good is adversarially chosen when the good arrives. We first observe that no online algorithm can achieve a competitive ratio better than the trivial $O(N)$, unless it is given additional information about the agents’ values. Then, in line with the emerging area of “algorithms with predictions”, we consider a setting where for each agent, the online algorithm is only given a prediction of her monopolist utility, i.e., her utility if all goods were given to her alone (corresponding to the sum of her values over the $T$ periods). Our main result is an online algorithm whose competitive ratio is parameterized by the multiplicative errors in these predictions. The algorithm achieves a competitive ratio of $O(\log N)$ and $O(\log T)$ if the predictions are perfectly accurate. Moreover, the competitive ratio degrades smoothly with the errors in the predictions, and is surprisingly robust: the logarithmic competitive ratio holds even if the predictions are very inaccurate. We complement this positive result by showing that our bounds are essentially tight: no online algorithm, even if provided with perfectly accurate predictions, can achieve a competitive ratio of $O((\log N)^{1−\epsilon})$ or $O((\log T)^{1-\epsilon})$ for any constant $\epsilon >0$.

Publication
2022 ACM Symposium on Discrete Algorithms

Earlier version titled Online Nash Social Welfare via Promised Utilities used normalized valuations instead of predicted valuations.

Siddhartha Banerjee
Siddhartha Banerjee
Associate Professor

Sid Banerjee is an associate professor in the School of Operations Research at Cornell, working on topics at the intersection of data-driven decision-making, market design, and algorithms for large-scale networks.

Related