Real-Time Approximate Routing for Smart Transit Systems

Abstract

We study real-time routing policies in smart transit systems, where the platform has a combination of cars and high-capacity vehicles (e.g., buses or shuttles) and seeks to serve a set of incoming trip requests. The platform can use its fleet of cars as a feeder to connect passengers to its high-capacity fleet, which operates on fixed routes. Our goal is to find the optimal set of (bus) routes and corresponding frequencies to maximize the social welfare of the system in a given time window. This generalizes the Line Planning Problem, a widely studied topic in the transportation literature, for which existing solutions are either heuristic (with no performance guarantees), or require extensive computation time (and hence are impractical for real-time use). To this end, we develop a $1−1/e−\epsilon$ approximation algorithm for the Real-Time Line Planning Problem, using ideas from randomized rounding and the Generalized Assignment Problem. Our guarantee holds under two assumptions: (i) no inter-bus transfers and (ii) access to a pre-specified set of feasible bus lines. We moreover show that these two assumptions are crucial by proving that, if either assumption is relaxed, the Real-Time Line Planning Problem does not admit any constant-factor approximation. Finally, we demonstrate the practicality of our algorithm via numerical experiments on real-world and synthetic datasets, in which we show that, given a fixed time budget, our algorithm outperforms Integer Linear Programming-based exact methods.

Publication
2021 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems
Siddhartha Banerjee
Siddhartha Banerjee
Associate Professor

Sid Banerjee is an associate professor in the School of Operations Research at Cornell, working on topics at the intersection of data-driven decision-making and stochastic control, economics and computation, and large-scale network algorithms.

Related